Striving for higher gate fidelity is crucial not only for enhancing existing noisy intermediate-scale quantum (NISQ) devices but also for unleashing the potential of fault-tolerantquantum computation through quantum error correction. A recently proposed theoretical scheme, the double-transmon coupler (DTC), aims to achieve both suppressed residual interaction and a fast high-fidelity two-qubit gate simultaneously, particularly for highly detuned qubits. Harnessing the state-of-the-art fabrication techniques and a model-free pulse-optimization process based on reinforcement learning, we translate the theoretical DTC scheme into reality, attaining fidelities of 99.92% for a CZ gate and 99.98% for single-qubit gates. The performance of the DTC scheme demonstrates its potential as a competitive building block for superconducting quantum processors.
Overcoming the issue of qubit-frequency fluctuations is essential to realize stable and practical quantum computing with solid-state qubits. Static ZZ interaction, which causes a frequencyshift of a qubit depending on the state of neighboring qubits, is one of the major obstacles to integrating fixed-frequency transmon qubits. Here we propose and experimentally demonstrate ZZ-interaction-free single-qubit-gate operations on a superconducting transmon qubit by utilizing a semi-analytically optimized pulse based on a perturbative analysis. The gate is designed to be robust against slow qubit-frequency fluctuations. The robustness of the optimized gate spans a few MHz, which is sufficient for suppressing the adverse effects of the ZZ interaction. Our result paves the way for an efficient approach to overcoming the issue of ZZ interaction without any additional hardware overhead.
Residual noise photons in a readout resonator become a major source of dephasing for a superconducting qubit when the resonator is optimized for a fast, high-fidelity dispersive readout.Here, we propose and demonstrate a nonlinear Purcell filter that suppresses such an undesired dephasing process without sacrificing the readout performance. When a readout pulse is applied, the filter automatically reduces the effective linewidth of the readout resonator, increasing the sensitivity of the qubit to the input field. The noise tolerance of the device we fabricated is shown to be enhanced by a factor of three relative to a device with a linear filter. The measurement rate is enhanced by another factor of three by utilizing the bifurcation of the nonlinear filter. A readout fidelity of 99.4% and a QND fidelity of 99.2% are achieved using a 40-ns readout pulse. The nonlinear Purcell filter will be an effective tool for realizing a fast, high-fidelity readout without compromising the coherence time of the qubit.
The axion search experiments based on haloscopes at the Center for Axion and Precision Physics Research (CAPP) of the Institute for Basic Science (IBS) in South Korea are performedin the frequency range from 1 GHz to 6 GHz. In order to perform the experiments in a strong magnetic field of 12 T and a large-volume cavity of close to 40 liters, we use He wet dilution refrigerators with immersed superconducting magnets. The measurements require continuous operation for months without interruptions for microwave component replacements. This is achieved by using different cryogenic engineering approaches including microwave RF-switching. The critical components, defining the scanning rate and the sensitivity of the setup, are the Josephson parametric amplifiers (JPA) and cryogenic low noise amplifiers (cLNA) based on high-electron-mobility-transistor (HEMT) technology. It is desirable for both devices to have a wide frequency range and low noise close to the quantum limit for the JPA. In this paper, we show a recent design of a 4-channel measurement setup for JPA and HEMT measurements. The setup is based on a 4-channel wideband noise source (NS) and is used for both JPA and HEMT gain and noise measurements. The setup is placed at 20 mK inside the dry dilution refrigerator. The NS is thermally decoupled from the environment using plastic spacers, superconducting wires and superconducting coaxial cables. We show the gain and noise temperature curves measured for 4 HEMT amplifiers and 2 JPAs in one cool-down
All-microwave control of fixed-frequency superconducting quantum computing circuits is advantageous for minimizing the noise channels and wiring costs. Here we introduce a swap interactionbetween two data transmons assisted by the third-order nonlinearity of a coupler transmon under a microwave drive. We model the interaction analytically and numerically and use it to implement an all-microwave controlled-Z gate. The gate based on the coupler-assisted swap transition maintains high drive efficiency and small residual interaction over a wide range of detuning between the data transmons.
Coupling a resonator to a superconducting qubit enables various operations on the qubit including dispersive readout and unconditional reset. The speed of these operations is limitedby the external decay rate of the resonator. However, increasing the decay rate also increases the rate of qubit decay via the resonator, limiting the qubit lifetime. Here, we demonstrate that the resonator-mediated qubit decay can be suppressed by utilizing the distributed-element, multi-mode nature of the resonator. We show that the suppression exceeds two orders of magnitude over a bandwidth of 600 MHz. We use this „intrinsic Purcell filter“ to demonstrate a 40-ns readout with 99.1% fidelity and a 100-ns reset with residual excitation of less than 1.7%.
Hybrid quantum devices expand the tools and techniques available for quantum sensing in various fields. Here, we experimentally demonstrate quantum sensing of the steady-state magnonpopulation in a magnetostatic mode of a ferrimagnetic crystal. Dispersively coupling the magnetostatic mode to a superconducting qubit allows the detection of magnons using Ramsey interferometry with a sensitivity on the order of 10−3 magnons/Hz−−−√. The protocol is based on dissipation as dephasing via fluctuations in the magnetostatic mode reduces the qubit coherence proportionally to the number of magnons.
We demonstrate fast two-qubit gates using a parity-violated superconducting qubit consisting of a capacitively-shunted asymmetric Josephson-junction loop under a finite magnetic fluxbias. The second-order nonlinearity manifesting in the qubit enables the interaction with a neighboring single-junction transmon qubit via first-order inter-qubit sideband transitions with Rabi frequencies up to 30~MHz. Simultaneously, the unwanted static longitudinal~(ZZ) interaction is eliminated with ac Stark shifts induced by a continuous microwave drive near-resonant to the sideband transitions. The average fidelities of the two-qubit gates are evaluated with randomized benchmarking as 0.967, 0.951, 0.956 for CZ, iSWAP and SWAP gates, respectively.
The rapid development in designs and fabrication techniques of superconducting qubits has helped making coherence times of qubits longer. In the near future, however, the radiativedecay of a qubit into its control line will be a fundamental limitation, imposing a trade-off between fast control and long lifetime of the qubit. In this work, we successfully break this trade-off by strongly coupling another superconducting qubit along the control line. This second qubit, which we call a Josephson quantum filter~(JQF), prevents the qubit from emitting microwave photons and thus suppresses its relaxation, while faithfully transmitting large-amplitude control microwave pulses due to the saturation of the quantum filter, enabling fast qubit control. We observe an improvement of the qubit relaxation time without a reduction of the Rabi frequency. This device could potentially help in the realization of a large-scale superconducting quantum information processor in terms of the heating of the qubit environments and the crosstalk between qubits.
Superconducting circuits offer a scalable platform for the construction of large-scale quantum networks where information can be encoded in multiple temporal modes of propagating microwaves.Characterization of such microwave signals with a method extendable to an arbitrary number of temporal modes with a single detector and demonstration of their phase-robust nature are of great interest. Here we show the on-demand generation and Wigner tomography of a microwave time-bin qubit with superconducting circuit quantum electrodynamics architecture. We perform the tomography with a single heterodyne detector by dynamically changing the measurement quadrature with a phase-sensitive amplifier independently for the two temporal modes. By generating and measuring the qubits with hardware lacking a shared phase reference, we demonstrate conservation of phase information in each time-bin qubit generated.