Arbitrary controlled-phase gate on fluxonium qubits using differential ac-Stark shifts

  1. Haonan Xiong,
  2. Quentin Ficheux,
  3. Aaron Somoroff,
  4. Long B. Nguyen,
  5. Ebru Dogan,
  6. Dario Rosenstock,
  7. Chen Wang,
  8. Konstantin N. Nesterov,
  9. Maxim G. Vavilov,
  10. and Vladimir E. Manucharyan
Large scale quantum computing motivates the invention of two-qubit gate schemes that not only maximize the gate fidelity but also draw minimal resources. In the case of superconducting
qubits, the weak anharmonicity of transmons imposes profound constraints on the gate design, leading to increased complexity of devices and control protocols. Here we demonstrate a resource-efficient control over the interaction of strongly-anharmonic fluxonium qubits. Namely, applying an off-resonant drive to non-computational transitions in a pair of capacitively-coupled fluxoniums induces a ZZ-interaction due to unequal ac-Stark shifts of the computational levels. With a continuous choice of frequency and amplitude, the drive can either cancel the static ZZ-term or increase it by an order of magnitude to enable a controlled-phase (CP) gate with an arbitrary programmed phase shift. The cross-entropy benchmarking of these non-Clifford operations yields a sub 1% error, limited solely by incoherent processes. Our result demonstrates the advantages of strongly-anharmonic circuits over transmons in designing the next generation of quantum processors.

Proposal for entangling gates on fluxonium qubits via a two-photon transition

  1. Konstantin N. Nesterov,
  2. Quentin Ficheux,
  3. Vladimir E. Manucharyan,
  4. and Maxim G. Vavilov
We propose a family of microwave-activated entangling gates on two capacitively coupled fluxonium qubits. A microwave pulse applied to either qubit at a frequency near the half-frequency
of the |00⟩−|11⟩ transition induces two-photon Rabi oscillations with a negligible leakage outside the computational subspace, owing to the strong anharmonicity of fluxoniums. By adjusting the drive frequency, amplitude, and duration, we obtain the gate family that is locally equivalent to the fermionic-simulation gates such as SWAP−−−−−−√-like and controlled-phase gates. The gate error can be tuned below 10−4 for a pulse duration under 100 ns without excessive circuit parameter matching. Given that the fluxonium coherence time can exceed 1 ms, our gate scheme is promising for large-scale quantum processors.

Fast logic with slow qubits: microwave-activated controlled-Z gate on low-frequency fluxoniums

  1. Quentin Ficheux,
  2. Long B. Nguyen,
  3. Aaron Somoroff,
  4. Haonan Xiong,
  5. Konstantin N. Nesterov,
  6. Maxim G. Vavilov,
  7. and Vladimir E. Manucharyan
We demonstrate a controlled-Z gate between capacitively coupled fluxonium qubits with transition frequencies 72.3 MHz and 136.3 MHz. The gate is activated by a 61.6 ns long pulse at
the frequency between non-computational transitions |10⟩−|20⟩ and |11⟩−|21⟩, during which the qubits complete only 4 and 8 Larmor periods, respectively. The measured gate error of (8±1)×10−3 is limited by decoherence in the non-computational subspace, which will likely improve in the next generation devices. Although our qubits are about fifty times slower than transmons, the two-qubit gate is faster than microwave-activated gates on transmons, and the gate error is on par with the lowest reported. Architectural advantages of low-frequency fluxoniums include long qubit coherence time, weak hybridization in the computational subspace, suppressed residual ZZ-coupling rate (here 46 kHz), and absence of either excessive parameter matching or complex pulse shaping requirements.

Photon-instanton collider implemented by a superconducting circuit

  1. Amir Burshtein,
  2. Roman Kuzmin,
  3. Vladimir E. Manucharyan,
  4. and Moshe Goldstein
Instantons, spacetime-localized quantum field tunneling events, are ubiquitous in correlated condensed matter and high energy systems. However, their direct observation through collisions
with conventional particles has not been considered possible. We show how recent advance in circuit quantum electrodynamics, specifically, the realization of galvanic coupling of a transmon qubit to a high-impedance transmission line, allows the observation of inelastic collisions of single microwave photons with instantons (phase slips). We develop the formalism for calculating the photon-instanton cross section, which should be useful in other quantum field theoretical contexts. In particular, we show that the inelastic scattering probability can significantly exceed the effect of conventional Josephson quartic anharmonicity, and reach order unity values.

Photon decay in circuit quantum electrodynamics

  1. Roman Kuzmin,
  2. Nicholas Grabon,
  3. Nitish Mehta,
  4. Amir Burshtein,
  5. Moshe Goldstein,
  6. Manuel Houzet,
  7. Leonid I. Glazman,
  8. and Vladimir E. Manucharyan
Light does not typically scatter light, as witnessed by the linearity of Maxwell’s equations. We constructed a superconducting circuit, in which microwave photons have well-defined
energy and momentum, but their lifetime is finite due to decay into lower energy photons. The inelastic photon-photon interaction originates from quantum phase-slip fluctuation in a single Josephson junction and has no analogs in quantum optics. Instead, the surprisingly high decay rate is explained by mapping the system to a Luttinger liquid containing an impurity. Our result connects circuit quantum electrodynamics to the topic of boundary quantum field theories in two dimensions, influential to both high-energy and condensed matter physics. The photon lifetime data is a rare example of a verified and useful quantum many-body simulation.

Electron shelving of a superconducting artificial atom

  1. Nathanaël Cottet,
  2. Haonan Xiong,
  3. Long B. Nguyen,
  4. Yen-Hsiang Lin,
  5. and Vladimir E. Manucharyan
Interfacing stationary qubits with propagating photons is a fundamental problem in quantum technology. Cavity quantum electrodynamics (CQED) invokes a mediator degree of freedom in
the form of a far-detuned cavity mode, the adaptation of which to superconducting circuits (cQED) proved remarkably fruitful. The cavity both blocks the qubit emission and it enables a dispersive readout of the qubit state. Yet, a more direct (cavityless) interface is possible with atomic clocks, in which an orbital cycling transition can scatter photons depending on the state of a hyperfine or quadrupole qubit transition. Originally termed „electron shelving“, such a conditional fluorescence phenomenon is the cornerstone of many quantum information platforms, including trapped ions, solid state defects, and semiconductor quantum dots. Here we apply the shelving idea to circuit atoms and demonstrate a conditional fluorescence readout of fluxonium qubit placed inside a matched one-dimensional waveguide. Cycling the non-computational transition between ground and third excited states produces a microwave photon every 91 ns conditioned on the qubit ground state, while the qubit coherence time exceeds 50 us. The readout has a built-in quantum non-demolition property, allowing over 100 fluorescence cycles in agreement with a four-level optical pumping model. Our result introduces a resource-efficient alternative to cQED. It also adds a state-of-the-art quantum memory to the growing toolbox of waveguide QED.

The superconducting quasicharge qubit

  1. Ivan V. Pechenezhskiy,
  2. Raymond A. Mencia,
  3. Long B. Nguyen,
  4. Yen-Hsiang Lin,
  5. and Vladimir E. Manucharyan
The non-dissipative non-linearity of a Josephson junction converts macroscopic superconducting circuits into artificial atoms, enabling some of the best controlled quantum bits (qubits)
today. Three fundamental types of superconducting qubits are known, each reflecting a distinct behavior of quantum fluctuations in a Cooper pair condensate: single charge tunneling (charge qubit), single flux tunneling (flux qubit), and phase oscillations (phase qubit). Yet, the dual nature of charge and flux suggests that circuit atoms must come in pairs. Here we introduce the missing one, named „blochnium“. It exploits a coherent insulating response of a single Josephson junction that emerges from the extension of phase fluctuations beyond the 2π-interval. Evidence for such effect was found in an out-of-equilibrium dc-transport through junctions connected to high-impedance leads, although a full consensus is absent to date. We shunt a weak junction with an exceptionally high-value inductance — the key technological innovation behind our experiment — and measure the rf-excitation spectrum as a function of external magnetic flux through the resulting loop. The junction’s insulating character manifests by the vanishing flux-sensitivity of the qubit transition between the ground and the first excited states, which nevertheless rapidly recovers for transitions to higher energy states. The spectrum agrees with a duality mapping of blochnium onto transmon, which replaces the external flux by the offset charge and introduces a new collective quasicharge variable in place of the superconducting phase. Our result unlocks the door to an unexplored regime of macroscopic quantum dynamics in ultrahigh-impedance circuits, which may have applications to quantum computing and quantum metrology of direct current.

Quantum dynamics of quasicharge in an ultrahigh-impedance superconducting circuit

  1. Ivan V. Pechenezhskiy,
  2. Raymond A. Mencia,
  3. Long B. Nguyen,
  4. Yen-Hsiang Lin,
  5. and Vladimir E. Manucharyan
Josephson effect is usually taken for granted because quantum fluctuations of the superconducting phase-difference are stabilized by the low-impedance embedding circuit. To realize
the opposite regime, we shunt a weak Josephson junction with a nearly ideal kinetic inductance, whose microwave impedance largely exceeds the resistance quantum, reaching above 160 kOhm. Such an extraordinary value is achieved with an optimally designed Josephson junction chain released off the substrate to minimize the stray capacitance. The low-energy spectrum of the resulting free-standing superconducting loop spectacularly loses magnetic flux sensitivity, explained by replacing the junction with a 2e-periodic in charge capacitance. This long-predicted quantum non-linearity dramatically expands the superconducting electronics toolbox with applications to metrology and quantum information

The high-coherence fluxonium qubit

  1. Long B. Nguyen,
  2. Yen-Hsiang Ling,
  3. Aaron Somoroff,
  4. Raymond Mencia,
  5. Nicholas Grabon,
  6. and Vladimir E. Manucharyan
We report superconducting fluxonium qubits with coherence times largely limited by energy relaxation and reproducibly satisfying T2 > 100 microseconds (T2 > 300 microseconds in one
device). Moreover, given the state of the art values of the surface loss tangent and the 1/f flux noise amplitude, coherence can be further improved beyond 1 millisecond. Our results violate a common viewpoint that the number of Josephson junctions in a superconducting circuit — over 100 here — must be minimized for best qubit coherence. We outline how the unique to fluxonium combination of long coherence time and large anharmonicity can benefit both gate-based and adiabatic quantum computing.

Superstrong coupling in circuit quantum electrodynamics

  1. Roman Kuzmin,
  2. Nitish Mehta,
  3. Nicholas Grabon,
  4. Raymond Mencia,
  5. and Vladimir E. Manucharyan
Vacuum fluctuations fundamentally affect an atom by inducing a fnite excited state lifetime along with a Lamb shift of its transition frequency. Here we report the reverse effect: modifcation
of vacuum by a single atom in circuit quantum electrodynamics. Our one-dimensional vacuum is a long section of a high wave impedance (comparable to resistance quantum) superconducting transmission line. It is directly wired to a transmon qubit circuit. Owing to the combination of high impedance and galvanic connection, the transmon’s spontaneous emission linewidth can greatly exceed the discrete transmission line modes spacing. This condition defines a previously unexplored superstrong coupling regime of quantum electrodynamics where many vacuum modes hybridize with each other through interactions with a single atom. We explore this regime by spectroscopically measuring the positions of over 100 consecutive transmission line resonances. The atom reveals itself as a broad peak in the vacuum’s density of states (DOS) together with the Kerr and cross-Kerr interaction of photons at frequencies within the DOS peak. Both dispersive effects are well described by a dissipative Caldeira-Leggett model of our circuit, with the transmon’s quartic anharmonicity treated as a perturbation. Non-perturbative modifications of such a vacuum, including inelastic scattering of single photons, are expected upon replacing the transmon by more anharmonic circuits, with broad implications for simulating critical dynamics of quantum impurity models.