Observation of the Schmid-Bulgadaev dissipative quantum phase transition

  1. Roman Kuzmin,
  2. Nitish Mehta,
  3. Nicholas Grabon,
  4. Raymond A. Mencia,
  5. Amir Burshtein,
  6. Moshe Goldstein,
  7. and Vladimir E. Manucharyan
Although quantum mechanics applies to many macroscopic superconducting devices, one basic prediction remained controversial for decades. Namely, a Josephson junction connected to a
resistor must undergo a dissipation-induced quantum phase transition from superconductor to insulator once the resistor’s value exceeds h/4e2≈6.5 kΩ (h is Planck’s constant, e is the electron charge). Here we finally demonstrate this transition by observing the resistor’s internal dynamics. Implementing our resistor as a long transmission line section, we find that a junction scatters electromagnetic excitations in the line as either inductance (superconductor) or capacitance (insulator), depending solely on the line’s wave impedance. At the phase boundary, the junction itself acts as ideal resistance: in addition to elastic scattering, incident photons can spontaneously down-convert with a frequency-independent probability, which provides a novel marker of quantum-critical behavior.

Photon-instanton collider implemented by a superconducting circuit

  1. Amir Burshtein,
  2. Roman Kuzmin,
  3. Vladimir E. Manucharyan,
  4. and Moshe Goldstein
Instantons, spacetime-localized quantum field tunneling events, are ubiquitous in correlated condensed matter and high energy systems. However, their direct observation through collisions
with conventional particles has not been considered possible. We show how recent advance in circuit quantum electrodynamics, specifically, the realization of galvanic coupling of a transmon qubit to a high-impedance transmission line, allows the observation of inelastic collisions of single microwave photons with instantons (phase slips). We develop the formalism for calculating the photon-instanton cross section, which should be useful in other quantum field theoretical contexts. In particular, we show that the inelastic scattering probability can significantly exceed the effect of conventional Josephson quartic anharmonicity, and reach order unity values.

Photon decay in circuit quantum electrodynamics

  1. Roman Kuzmin,
  2. Nicholas Grabon,
  3. Nitish Mehta,
  4. Amir Burshtein,
  5. Moshe Goldstein,
  6. Manuel Houzet,
  7. Leonid I. Glazman,
  8. and Vladimir E. Manucharyan
Light does not typically scatter light, as witnessed by the linearity of Maxwell’s equations. We constructed a superconducting circuit, in which microwave photons have well-defined
energy and momentum, but their lifetime is finite due to decay into lower energy photons. The inelastic photon-photon interaction originates from quantum phase-slip fluctuation in a single Josephson junction and has no analogs in quantum optics. Instead, the surprisingly high decay rate is explained by mapping the system to a Luttinger liquid containing an impurity. Our result connects circuit quantum electrodynamics to the topic of boundary quantum field theories in two dimensions, influential to both high-energy and condensed matter physics. The photon lifetime data is a rare example of a verified and useful quantum many-body simulation.