Mode Structure in Superconducting Metamaterial Transmission Line Resonators

  1. H. Wang,
  2. A.P. Zhuravel,
  3. S. Indrajeet,
  4. Bruno G. Taketani,
  5. M. D. Hutchings,
  6. Y. Hao,
  7. F. Rouxinol,
  8. F.K. Wilhelm,
  9. M. LaHaye,
  10. A. V. Ustinov,
  11. and B. L. T. Plourde
Superconducting metamaterials are a promising resource for quantum information science. In the context of circuit QED, they provide a means to engineer on-chip, novel dispersion relations
and a band structure that could ultimately be utilized for generating complex entangled states of quantum circuitry, for quantum reservoir engineering, and as an element for quantum simulation architectures. Here we report on the development and measurement at millikelvin temperatures of a particular type of circuit metamaterial resonator composed of planar superconducting lumped-element reactances in the form of a discrete left-handed transmission line (LHTL). We discuss the details of the design, fabrication, and circuit properties of this system. As well, we provide an extensive characterization of the dense mode spectrum in these metamaterial resonators, which we conducted using both microwave transmission measurements and laser scanning microscopy (LSM). Results are observed to be in good quantitative agreement with numerical simulations and also an analytical model based upon current-voltage relationships for a discrete transmission line. In particular, we demonstrate that the metamaterial mode frequencies, spatial profiles of current and charge densities, and damping due to external loading can be readily modeled and understood, making this system a promising tool for future use in quantum circuit applications and for studies of complex quantum systems.

Left-handed superlattice metamaterials for circuit-QED

  1. Anette Messinger,
  2. Bruno G. Taketani,
  3. and Frank K. Wilhelm
Quantum simulations is a promising field where a controllable system is used to mimic another system of interest, whose properties one wants to investigate. One of the key issues for
such simulations is the ability to control the environment the system couples to, be it to isolate the system or to engineer a tailored environment of interest. One strategy recently put forward for environment engineering is the use of metamaterials with negative index of refraction. Here we build on this concept and propose a circuit-QED simulation of many-body Hamiltonians using superlattice metamaterials. We give a detailed description of a superlattice transmission line coupled to an embedded qubit, and show how this system can be used to simulate the spin-boson model in regimes where analytical and numerical methods usually fail, e.g. the strong coupling regime.