Measurement of a Superconducting Qubit with a Microwave Photon Counter

  1. A. Opremcak,
  2. I. V. Pechenezhskiy,
  3. C. Howington,
  4. B. G. Christensen,
  5. M. A. Beck,
  6. E. Leonard Jr.,
  7. J. Suttle,
  8. C. Wilen,
  9. K. N. Nesterov,
  10. G. J. Ribeill,
  11. T. Thorbeck,
  12. F. Schlenker,
  13. M.G. Vavilov,
  14. B. L. T. Plourde,
  15. and R. McDermott
Fast, high-fidelity measurement is a key ingredient for quantum error correction. Conventional approaches to the measurement of superconducting qubits, involving linear amplification
of a microwave probe tone followed by heterodyne detection at room temperature, do not scale well to large system sizes. Here we introduce an alternative approach to measurement based on a microwave photon counter. We demonstrate raw single-shot measurement fidelity of 92%. Moreover, we exploit the intrinsic damping of the counter to extract the energy released by the measurement process, allowing repeated high-fidelity quantum non-demolition measurements. Crucially, our scheme provides access to the classical outcome of projective quantum measurement at the millikelvin stage. In a future system, counter-based measurement could form the basis for a scalable quantum-to-classical interface.

Reverse isolation and backaction of the SLUG microwave amplifier

  1. T. Thorbeck,
  2. S. Zhu,
  3. E. Leonard Jr.,
  4. R. Barends,
  5. J. Kelly,
  6. John M. Martinis,
  7. and R. McDermott
An ideal preamplifier for qubit measurement must not only provide high gain and near quantum-limited noise performance, but also isolate the delicate quantum circuit from noisy downstream
measurement stages while producing negligible backaction. Here we use a Superconducting Low-inductance Undulatory Galvanometer (SLUG) microwave amplifier to read out a superconducting transmon qubit, and we characterize both reverse isolation and measurement backaction of the SLUG. For appropriate dc bias, the SLUG achieves reverse isolation that is better than that of a commercial cryogenic isolator. Moreover, SLUG backaction is dominated by thermal emission from dissipative elements in the device. When the SLUG is operated in pulsed mode, it is possible to characterize the transmon qubit using a measurement chain that is free from cryogenic isolators or circulators with no measurable degradation of qubit performance.