Suspending superconducting qubits by silicon micromachining

  1. Y. Chu,
  2. C. Axline,
  3. C. Wang,
  4. T. Brecht,
  5. Y. Y. Gao,
  6. L. Frunzio,
  7. and R. J. Schoelkopf
We present a method for relieving aluminum 3D transmon qubits from a silicon substrate using micromachining. Our technique is a high yield, one-step deep reactive ion etch that requires
no additional fabrication processes, and results in the suspension of the junction area and edges of the aluminum film. The drastic change in the device geometry affects both the dielectric and flux noise environment experienced by the qubit. In particular, the participation ratios of various dielectric interfaces are significantly modified, and suspended qubits exhibited longer T1’s than non-suspended ones. We also find that suspension increases the flux noise experienced by tunable SQUID-based qubits.

Implementing and characterizing precise multi-qubit measurements

  1. J. Z. Blumoff,
  2. K. Chou,
  3. C. Shen,
  4. M. Reagor,
  5. C. Axline,
  6. R. T. Brierley,
  7. M. P. Silveri,
  8. C. Wang,
  9. B. Vlastakis,
  10. S. E. Nigg,
  11. L. Frunzio,
  12. M. H. Devoret,
  13. L. Jiang,
  14. S. M. Girvin,
  15. and R. J. Schoelkopf
There are two general requirements to harness the computational power of quantum mechanics: the ability to manipulate the evolution of an isolated system and the ability to faithfully
extract information from it. Quantum error correction and simulation often make a more exacting demand: the ability to perform non-destructive measurements of specific correlations within that system. We realize such measurements by employing a protocol adapted from [S. Nigg and S. M. Girvin, Phys. Rev. Lett. 110, 243604 (2013)], enabling real-time selection of arbitrary register-wide Pauli operators. Our implementation consists of a simple circuit quantum electrodynamics (cQED) module of four highly-coherent 3D transmon qubits, collectively coupled to a high-Q superconducting microwave cavity. As a demonstration, we enact all seven nontrivial subset-parity measurements on our three-qubit register. For each we fully characterize the realized measurement by analyzing the detector (observable operators) via quantum detector tomography and by analyzing the quantum back-action via conditioned process tomography. No single quantity completely encapsulates the performance of a measurement, and standard figures of merit have not yet emerged. Accordingly, we consider several new fidelity measures for both the detector and the complete measurement process. We measure all of these quantities and report high fidelities, indicating that we are measuring the desired quantities precisely and that the measurements are highly non-demolition. We further show that both results are improved significantly by an additional error-heralding measurement. The analyses presented here form a useful basis for the future characterization and validation of quantum measurements, anticipating the demands of emerging quantum technologies.

Continuous quantum nondemolition measurement of the transverse component of a qubit

  1. U. Vool,
  2. S. Shankar,
  3. S. O. Mundhada,
  4. N. Ofek,
  5. A. Narla,
  6. K. Sliwa,
  7. E. Zalys-Geller,
  8. Y. Liu,
  9. L. Frunzio,
  10. R. J. Schoelkopf,
  11. S. M. Girvin,
  12. and M. H. Devoret
Quantum jumps of a qubit are usually observed between its energy eigenstates, also known as its longitudinal pseudo-spin component. Is it possible, instead, to observe quantum jumps
between the transverse superpositions of these eigenstates? We answer positively by presenting the first continuous quantum nondemolition measurement of the transverse component of an individual qubit. In a circuit QED system irradiated by two pump tones, we engineer an effective Hamiltonian whose eigenstates are the transverse qubit states, and a dispersive measurement of the corresponding operator. Such transverse component measurements are a useful tool in the driven-dissipative operation engineering toolbox, which is central to quantum simulation and quantum error correction.

Robust concurrent remote entanglement between two superconducting qubits

  1. A. Narla,
  2. S. Shankar,
  3. M. Hatridge,
  4. Z. Leghtas,
  5. K. M. Sliwa,
  6. E. Zalys-Geller,
  7. S. O. Mundhada,
  8. W. Pfaff,
  9. L. Frunzio,
  10. R. J. Schoelkopf,
  11. and M. H. Devoret
Entangling two remote quantum systems which never interact directly is an essential primitive in quantum information science. In quantum optics, remote entanglement experiments provides
one approach for loophole-free tests of quantum non-locality and form the basis for the modular architecture of quantum computing. In these experiments, the two qubits, Alice and Bob, are each first entangled with a traveling photon. Subsequently, the two photons paths interfere on a beam-splitter before being directed to single-photon detectors. Such concurrent remote entanglement protocols using discrete Fock states can be made robust to photon losses, unlike schemes that rely on continuous variable states. This robustness arises from heralding the entanglement on the detection of events which can be selected for their unambiguity. However, efficiently detecting single photons is challenging in the domain of superconducting quantum circuits because of the low energy of microwave quanta. Here, we report the realization of a novel microwave photon detector implemented in the circuit quantum electrodynamics (cQED) framework of superconducting quantum information, and the demonstration, with this detector, of a robust form of concurrent remote entanglement. Our experiment opens the way for the implementation of the modular architecture of quantum computation with superconducting qubits.

Demonstrating Quantum Error Correction that Extends the Lifetime of Quantum Information

  1. Nissim Ofek,
  2. Andrei Petrenko,
  3. Reinier Heeres,
  4. Philip Reinhold,
  5. Zaki Leghtas,
  6. Brian Vlastakis,
  7. Yehan Liu,
  8. Luigi Frunzio,
  9. S. M. Girvin,
  10. Liang Jiang,
  11. Mazyar Mirrahimi,
  12. M. H. Devoret,
  13. and R. J. Schoelkopf
The remarkable discovery of Quantum Error Correction (QEC), which can overcome the errors experienced by a bit of quantum information (qubit), was a critical advance that gives hope
for eventually realizing practical quantum computers. In principle, a system that implements QEC can actually pass a „break-even“ point and preserve quantum information for longer than the lifetime of its constituent parts. Reaching the break-even point, however, has thus far remained an outstanding and challenging goal. Several previous works have demonstrated elements of QEC in NMR, ions, nitrogen vacancy (NV) centers, photons, and superconducting transmons. However, these works primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to extend the lifetime of quantum information over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of coherent states, or cat states of a superconducting resonator. Moreover, the experiment implements a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode, and correct. As measured by full process tomography, the enhanced lifetime of the encoded information is 320 microseconds without any post-selection. This is 20 times greater than that of the system’s transmon, over twice as long as an uncorrected logical encoding, and 10% longer than the highest quality element of the system (the resonator’s 0, 1 Fock states). Our results illustrate the power of novel, hardware efficient qubit encodings over traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming the basic concepts to exploring the metrics that drive system performance and the challenges in implementing a fault-tolerant system.

Fluxonium-resonator system in the nonperturbative regime

  1. W. C. Smith,
  2. A. Kou,
  3. U. Vool,
  4. I. M. Pop,
  5. L. Frunzio,
  6. R. J. Schoelkopf,
  7. and M. H. Devoret
We present a method for calculating the low-energy spectra of superconducting circuits with arbitrarily strong anharmonicity and coupling. As an example, we numerically diagonalize
the Hamiltonian of a fluxonium qubit inductively coupled to a readout resonator. Our method treats both the anharmonicity of the Hamiltonian and the coupling between qubit and readout modes exactly. Calculated spectra are compared to measured spectroscopy data for this fluxonium-resonator system. We observe excellent quantitative agreement between theory and experiment that is not possible with a purely perturbative approach.

A Schrodinger Cat Living in Two Boxes

  1. Chen Wang,
  2. Yvonne Y. Gao,
  3. Philip Reinhold,
  4. R. W. Heeres,
  5. Nissim Ofek,
  6. Kevin Chou,
  7. Christopher Axline,
  8. Matthew Reagor,
  9. Jacob Blumoff,
  10. K. M. Sliwa,
  11. L. Frunzio,
  12. S. M. Girvin,
  13. Liang Jiang,
  14. M. Mirrahimi,
  15. M. H. Devoret,
  16. and R. J. Schoelkopf
Quantum superpositions of distinct coherent states in a single-mode harmonic oscillator, known as „cat states“, have been an elegant demonstration of Schrodinger’s
famous cat paradox. Here, we realize a two-mode cat state of electromagnetic fields in two microwave cavities bridged by a superconducting artificial atom, which can also be viewed as an entangled pair of single-cavity cat states. We present full quantum state tomography of this complex cat state over a Hilbert space exceeding 100 dimensions via quantum non-demolition measurements of the joint photon number parity. The ability to manipulate such multi-cavity quantum states paves the way for logical operations between redundantly encoded qubits for fault-tolerant quantum computation and communication.

2.5D circuit quantum electrodynamics

  1. Z.K. Minev,
  2. K. Serniak,
  3. I.M. Pop,
  4. Z. Leghtas,
  5. K. Sliwa,
  6. M. Hatridge,
  7. L. Frunzio,
  8. R. J. Schoelkopf,
  9. and M. H. Devoret
Experimental quantum information processing with superconducting circuits is rapidly advancing, driven by innovation in two classes of devices, one involving planar micro-fabricated
(2D) resonators, and the other involving machined three-dimensional (3D) cavities. We demonstrate that circuit quantum electrodynamics (cQED), which is based on the interaction of low-loss resonators and qubits, can be implemented in a multilayer superconducting structure, which combines 2D and 3D advantages, hence its nickname „2.5.“ We employ standard micro-fabrication techniques to pattern each layer, and rely on a vacuum gap between the layers to store the electromagnetic energy. Planar superconducting qubits are lithographically defined as an aperture in a conducting boundary of multilayer resonators, rather than as a separate metallic structure on an insulating substrate. In order to demonstrate the potential of these design principles, we implemented an integrated, two-cavity-modes, one-transmon-qubit system for cQED experiments. The measured coherence times and coupling energies suggest that the 2.5D platform would be a promising base for integrated quantum information processing.

Multilayer microwave integrated quantum circuits for scalable quantum computing

  1. T. Brecht,
  2. W. Pfaff,
  3. C. Wang,
  4. Y. Chu,
  5. L. Frunzio,
  6. M. H. Devoret,
  7. and R. J. Schoelkopf
As experimental quantum information processing (QIP) rapidly advances, an emerging challenge is to design a scalable architecture that combines various quantum elements into a complex
device without compromising their performance. In particular, superconducting quantum circuits have successfully demonstrated many of the requirements for quantum computing, including coherence levels that approach the thresholds for scaling. However, it remains challenging to couple a large number of circuit components through controllable channels while suppressing any other interactions. We propose a hardware platform intended to address these challenges, which combines the advantages of integrated circuit fabrication and long coherence times achievable in three-dimensional circuit quantum electrodynamics (3D cQED). This multilayer microwave integrated quantum circuit (MMIQC) platform provides a path toward the realization of increasingly complex superconducting devices in pursuit of a scalable quantum computer.

Demonstration of superconducting micromachined cavities

  1. T. Brecht,
  2. M. Reagor,
  3. Y. Chu,
  4. W. Pfaff,
  5. C. Wang,
  6. L. Frunzio,
  7. M. H. Devoret,
  8. and R. J. Schoelkopf
Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics (cQED). Within a densely integrated device, they can
protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this Letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.