Continuous quantum nondemolition measurement of the transverse component of a qubit

  1. U. Vool,
  2. S. Shankar,
  3. S. O. Mundhada,
  4. N. Ofek,
  5. A. Narla,
  6. K. Sliwa,
  7. E. Zalys-Geller,
  8. Y. Liu,
  9. L. Frunzio,
  10. R. J. Schoelkopf,
  11. S. M. Girvin,
  12. and M. H. Devoret
Quantum jumps of a qubit are usually observed between its energy eigenstates, also known as its longitudinal pseudo-spin component. Is it possible, instead, to observe quantum jumps
between the transverse superpositions of these eigenstates? We answer positively by presenting the first continuous quantum nondemolition measurement of the transverse component of an individual qubit. In a circuit QED system irradiated by two pump tones, we engineer an effective Hamiltonian whose eigenstates are the transverse qubit states, and a dispersive measurement of the corresponding operator. Such transverse component measurements are a useful tool in the driven-dissipative operation engineering toolbox, which is central to quantum simulation and quantum error correction.