Energy-participation quantization of Josephson circuits

  1. Zlatko K. Minev,
  2. Zaki Leghtas,
  3. Shantanu O. Mundhada,
  4. Lysander Christakis,
  5. Ioan M. Pop,
  6. and Michel H. Devoret
Superconducting microwave circuits incorporating nonlinear devices, such as Josephson junctions, are one of the leading platforms for emerging quantum technologies. Increasing circuit
complexity further requires efficient methods for the calculation and optimization of the spectrum, nonlinear interactions, and dissipation in multi-mode distributed quantum circuits. Here, we present a method based on the energy-participation ratio (EPR) of a dissipative or nonlinear element in an electromagnetic mode. The EPR, a number between zero and one, quantifies how much of the energy of a mode is stored in each element. It obeys universal constraints—valid regardless of the circuit topology and nature of the nonlinear elements. The EPR of the elements are calculated from a unique, efficient electromagnetic eigenmode simulation of the linearized circuit, including lossy elements. Their set is the key input to the determination of the quantum Hamiltonian of the system. The method provides an intuitive and simple-to-use tool to quantize multi-junction circuits. It is especially well-suited for finding the Hamiltonian and dissipative parameters of weakly anharmonic systems, such as transmon qubits coupled to resonators, or Josephson transmission lines. We experimentally tested this method on a variety of Josephson circuits, and demonstrated agreement within several percents for nonlinear couplings and modal Hamiltonian parameters, spanning five-orders of magnitude in energy, across a dozen samples.

The Kerr-Cat Qubit: Stabilization, Readout, and Gates

  1. Alexander Grimm,
  2. Nicholas E. Frattini,
  3. Shruti Puri,
  4. Shantanu O. Mundhada,
  5. Steven Touzard,
  6. Mazyar Mirrahimi,
  7. Steven M. Girvin,
  8. Shyam Shankar,
  9. and Michel H. Devoret
Quantum superpositions of macroscopically distinct classical states, so-called Schrödinger cat states, are a resource for quantum metrology, quantum communication, and quantum computation.
In particular, the superpositions of two opposite-phase coherent states in an oscillator encode a qubit protected against phase-flip errors. However, several challenges have to be overcome in order for this concept to become a practical way to encode and manipulate error-protected quantum information. The protection must be maintained by stabilizing these highly excited states and, at the same time, the system has to be compatible with fast gates on the encoded qubit and a quantum non-demolition readout of the encoded information. Here, we experimentally demonstrate a novel method for the generation and stabilization of Schrödinger cat states based on the interplay between Kerr nonlinearity and single-mode squeezing in a superconducting microwave resonator. We show an increase in transverse relaxation time of the stabilized, error-protected qubit over the single-photon Fock-state encoding by more than one order of magnitude. We perform all single-qubit gate operations on time-scales more than sixty times faster than the shortest coherence time and demonstrate single-shot readout of the protected qubit under stabilization. Our results showcase the combination of fast quantum control with the robustness against errors intrinsic to stabilized macroscopic states and open up the possibility of using these states as resources in quantum information processing.

Stabilized Cat in Driven Nonlinear Cavity: A Fault-Tolerant Error Syndrome Detector

  1. Shruti Puri,
  2. Alexander Grimm,
  3. Philippe Campagne-Ibarcq,
  4. Alec Eickbusch,
  5. Kyungjoo Noh,
  6. Gabrielle Roberts,
  7. Liang Jiang,
  8. Mazyar Mirrahimi,
  9. Michel H. Devoret,
  10. and Steven M. Girvin
low-weight operations with an ancilla to extract information about errors without causing backaction on the encoded system. Essentially, ancilla errors must not propagate to the encoded
system and induce errors beyond those which can be corrected. The current schemes for achieving this fault-tolerance to ancilla errors come at the cost of increased overhead requirements. An efficient way to extract error syndromes in a fault-tolerant manner is by using a single ancilla with strongly biased noise channel. Typically, however, required elementary operations can become challenging when the noise is extremely biased. We propose to overcome this shortcoming by using a bosonic-cat ancilla in a parametrically driven nonlinear cavity. Such a cat-qubit experiences only bit-flip noise and is stabilized against phase-flips. To highlight the flexibility of this approach, we illustrate the syndrome extraction process in a variety of codes such as qubit-based toric codes, bosonic cat- and Gottesman-Kitaev-Preskill (GKP) codes. Our results open a path for realizing hardware-efficient, fault-tolerant error syndrome extraction.

Entangling Bosonic Modes via an Engineered Exchange Interaction

  1. Yvonne Y. Gao,
  2. Brian J. Lester,
  3. Kevin Chou,
  4. Luigi Frunzio,
  5. Michel H. Devoret,
  6. Liang Jiang,
  7. S. M. Girvin,
  8. and Robert J. Schoelkopf
The realization of robust universal quantum computation with any platform ultimately requires both the coherent storage of quantum information and (at least) one entangling operation
between individual elements. The use of continuous-variable bosonic modes as the quantum element is a promising route to preserve the coherence of quantum information against naturally-occurring errors. However, operations between bosonic modes can be challenging. In analogy to the exchange interaction between discrete-variable spin systems, the exponential-SWAP unitary [UE(θc)] can coherently transfer the states between two bosonic modes, regardless of the chosen encoding, realizing a deterministic entangling operation for certain θc. Here, we develop an efficient circuit to implement UE(θc) and realize the operation in a three-dimensional circuit QED architecture. We demonstrate high-quality deterministic entanglement between two cavity modes with several different encodings. Our results provide a crucial primitive necessary for universal quantum computation using bosonic modes.

Strongly driven quantum Josephson circuits

  1. Lucas Verney,
  2. Raphaël Lescanne,
  3. Michel H. Devoret,
  4. Zaki Leghtas,
  5. and Mazyar Mirrahimi
Radio Frequency driven Josephson circuits provide a rich platform to engineer a variety of nonlinear Hamiltonians for superconducting quantum circuits. While Josephson junctions mediate
strong interactions between microwave photons, some particular types of interaction Hamiltonians can only be obtained through the application of microwave drives (pumps) at well-chosen frequencies. For various applications, it is important to increase the pump strength without introducing undesired couplings and interferences that limit the fidelity of the operations. In this Letter, we analyze these limitations through the theoretical study of the steady state behavior of the driven-dissipative systems. Our general analysis, based on the Floquet-Markov theory, indicates that the ubiquitous circuit consisting of a transmon coupled to a harmonic oscillator suffers from strong limitations in this regard. In accordance with a parallel experimental study, we find that above a fairly low critical pump power the transmon state escapes the Josephson potential confinement and is sent to a statistical mixture of free-particle like states. Next, we illustrate that by diluting the non-linearity of the Josephson junction through a parallel inductive shunt, the picture changes significantly and one achieves very large dynamic ranges in the pump power. This theoretical study provides the ground for drastic modifications in Josephson circuit designs to be used in parametric Hamiltonian engineering experiments.

Dynamics of an off-resonantly pumped superconducting qubit in a cavity

  1. Raphaël Lescanne,
  2. Lucas Verney,
  3. Quentin Ficheux,
  4. Michel H. Devoret,
  5. Benjamin Huard,
  6. Mazyar Mirrahimi,
  7. and Zaki Leghtas
Strong microwave drives, referred to as pumps, are widely applied to superconducting circuits incorporating Josephson junctions in order to induce couplings between electromagnetic
modes. This offers a variety of applications, from quantum-limited amplification, to quantum state and manifold stabilization. These couplings scale with the pump power, therefore, seeking stronger couplings requires a detailed understanding of the behavior of such circuits in the presence of stronger pumps. In this work, we probe the dynamics of a transmon qubit in a 3D cavity, for various pump powers and frequencies. For all pump frequencies, we find a critical pump power above which the transmon is driven into highly excited states, beyond the first seven states which we individually resolve through cavity spectroscopy. This observation is compatible with our theory describing the escape of the transmon state out of its Josephson potential well, into states resembling those of a free particle which does not induce any non-linear couplings.

Multimode cat codes

  1. Victor V. Albert,
  2. Shantanu O. Mundhada,
  3. Alexander Grimm,
  4. Steven Touzard,
  5. Michel H. Devoret,
  6. and Liang Jiang
We introduce a driven-dissipative two-mode bosonic system whose reservoir causes simultaneous loss of two photons in each mode and whose steady states are superpositions of pair-coherent/Barut-Girardello
coherent states. We show how quantum information encoded in a steady-state subspace of this system is exponentially immune to phase drifts (cavity dephasing) in both modes. Additionally, it is possible to protect information from arbitrary photon loss in either (but not simultaneously both) of the modes by continuously monitoring the difference between the expected photon numbers of the logical states. Despite employing more resources, the two-mode scheme enjoys two advantages over its one-mode counterpart with regards to implementation using current circuit QED technology. First, monitoring the photon number difference can be done without turning off the currently implementable dissipative stabilizing process. Second, a lower average photon number per mode is required to enjoy a level of protection at least as good as that of the cat-codes. We discuss circuit QED proposals to stabilize the code states, perform gates, and protect against photon loss via either active syndrome measurement or an autonomous procedure. We introduce quasiprobability distributions allowing us to represent two-mode states of fixed photon number difference in a two-dimensional complex plane, instead of the full four-dimensional two-mode phase space. The two-mode codes are generalized to multiple modes in an extension of the stabilizer formalism to non-diagonalizable stabilizers. The M-mode codes can protect against either arbitrary photon losses in up to M−1 modes or arbitrary losses or gains in any one mode.

Schrodinger’s catapult: Launching multiphoton quantum states from a microwave cavity memory

  1. Wolfgang Pfaff,
  2. Christopher J Axline,
  3. Luke D Burkhart,
  4. Uri Vool,
  5. Philip Reinhold,
  6. Luigi Frunzio,
  7. Liang Jiang,
  8. Michel H. Devoret,
  9. and Robert J. Schoelkopf
Encoding quantum states in complex multiphoton fields can overcome loss during signal transmission in a quantum network. Transmitting quantum information encoded in this way requires
that locally stored states can be converted to propagating fields. Here we experimentally show the controlled conversion of multiphoton quantum states, like „Schr\“odinger cat“ states, from a microwave cavity quantum memory into propagating modes. By parametric conversion using the nonlinearity of a single Josephson junction, we can release the cavity state in ~500 ns, about 3 orders of magnitude faster than its intrinsic lifetime. This `catapult‘ faithfully converts arbitrary cavity fields to traveling signals with an estimated efficiency of > 90%, enabling on-demand generation of complex itinerant quantum states. Importantly, the release process can be controlled precisely on fast time scales, allowing us to generate entanglement between the cavity and the traveling mode by partial conversion. Our system can serve as the backbone of a microwave quantum network, paving the way towards error-correctable distribution of quantum information and the transfer of highly non-classical states to hybrid quantum systems.

Quantum Channel Construction with Circuit Quantum Electrodynamics

  1. Chao Shen,
  2. Kyungjoo Noh,
  3. Victor V. Albert,
  4. Stefan Krastanov,
  5. Michel H. Devoret,
  6. Robert J. Schoelkopf,
  7. S. M. Girvin,
  8. and Liang Jiang
Quantum channels can describe all transformations allowed by quantum mechanics. We provide an explicit universal protocol to construct all possible quantum channels, using a single
qubit ancilla with quantum non-demolition readout and adaptive control. Our construction is efficient in both physical resources and circuit depth, and can be demonstrated using superconducting circuits and various other physical platforms. There are many applications of quantum channel construction, including system stabilization and quantum error correction, Markovian and exotic channel simulation, implementation of generalized quantum measurements and more general quantum instruments. Efficient construction of arbitrary quantum channels opens up exciting new possibilities for quantum control, quantum sensing and information processing tasks.

Degeneracy-preserving quantum non-demolition measurement of parity-type observables for cat-qubits

  1. Joachim Cohen,
  2. W. Clarke Smith,
  3. Michel H. Devoret,
  4. and Mazyar Mirrahimi
A central requirement for any quantum error correction scheme is the ability to perform quantum non-demolition measurements of an error syndrome, corresponding to a special symmetry
property of the encoding scheme. It is in particular important that such a measurement does not introduce extra error mechanisms, not included in the error model of the correction scheme. In this letter, we ensure such a robustness by designing an interaction with a measurement device that preserves the degeneracy of the measured observable. More precisely, we propose a scheme to perform continuous and quantum non-demolition measurement of photon-number parity in a microwave cavity. This corresponds to the error syndrome in a class of error correcting codes called the cat-codes, which have recently proven to be efficient and versatile for quantum information processing. In our design, we exploit the strongly nonlinear Hamiltonian of a high-impedance Josephson circuit, coupling a high-Q cavity storage cavity mode to a low-Q readout one. By driving the readout resonator at its resonance, the phase of the reflected/transmitted signal carries directly exploitable information on parity-type observables for encoded cat-qubits of the high-Q mode.