Initial experimental results on a superconducting-qubit reset based on photon-assisted quasiparticle tunneling

  1. V. A. Sevriuk,
  2. W. Liu,
  3. J. Rönkkö,
  4. H. Hsu,
  5. F. Marxer,
  6. T. F. Mörstedt,
  7. M. Partanen,
  8. J. Räbinä,
  9. M. Venkatesh,
  10. J. Hotari,
  11. L. Grönberg,
  12. J. Heinsoo,
  13. T. Li,
  14. J. Tuorila,
  15. K.W. Chan,
  16. J. Hassel,
  17. K. Y. Tan,
  18. and M. Möttönen
We present here our recent results on qubit reset scheme based on a quantum-circuit refrigerator (QCR). In particular, we use the photon-assisted quasiparticle tunneling through a superconductor–insulator–normal-metal–insulator–superconductor
junction to controllably decrease the energy relaxation time of the qubit during the QCR operation. In our experiment, we use a transmon qubit with dispersive readout. The QCR is capacitively coupled to the qubit through its normal-metal island. We employ rapid, square-shaped QCR control voltage pulses with durations in the range of 2–350 ns and a variety of amplitudes to optimize the reset time and fidelity. Consequently, we reach a qubit ground-state probability of roughly 97% with 80-ns pulses starting from the first excited state. The qubit state probability is extracted from averaged readout signal, where the calibration is based of the Rabi oscillations, thus not distinguishing the residual thermal population of the qubit.

Experimental quantum teleportation of propagating microwaves

  1. K. G. Fedorov,
  2. M. Renger,
  3. S. Pogorzalek,
  4. R. Di Candia,
  5. Q. Chen,
  6. Y. Nojiri,
  7. K. Inomata,
  8. Y. Nakamura,
  9. M. Partanen,
  10. A. Marx,
  11. R. Gross,
  12. and F. Deppe
The modern field of quantum communication thrives on promise to deliver efficient and unconditionally secure ways to exchange information by exploiting quantum laws of physics. Here,
quantum teleportation stands out as an exemplary protocol allowing for the disembodied and safe transfer of unknown quantum states using quantum entanglement and classical communication as resources. The experimental feasibility of quantum teleportation with propagating waves, relevant to communication scenarios, has been demonstrated in various physical settings. However, an analogous implementation of quantum teleportation in the microwave domain was missing so far. At the same time, recent breakthroughs in quantum computation with superconducting circuits have triggered a demand for quantum communication between spatially separated superconducting processors operated at microwave frequencies. Here, we demonstrate a realization of deterministic quantum teleportation of coherent microwave states by exploiting two-mode squeezing and analog feedforward over macroscopic distances d=42cm. We achieve teleportation fidelities F=0.689±0.004 exceeding the no-cloning Fnc=2/3 threshold for coherent states with an average photon number of up to nd=1.1. Our results provide a key ingredient for the teleportation-based quantum gate for modular quantum computing with superconducting circuits and establish a solid foundation for future microwave quantum local area networks.

Beyond the standard quantum limit of parametric amplification

  1. M. Renger,
  2. S. Pogorzalek,
  3. Q. Chen,
  4. Y. Nojiri,
  5. K. Inomata,
  6. Y. Nakamura,
  7. M. Partanen,
  8. A. Marx,
  9. R. Gross,
  10. F. Deppe,
  11. and K. G. Fedorov
The low-noise amplification of weak microwave signals is crucial for countless protocols in quantum information processing. Quantum mechanics sets an ultimate lower limit of half a
photon to the added input noise for phase-preserving amplification of narrowband signals, also known as the standard quantum limit (SQL). This limit, which is equivalent to a maximum quantum efficiency of 0.5, can be overcome by employing nondegenerate parametric amplification of broadband signals. We show that, in principle, a maximum quantum efficiency of 1 can be reached. Experimentally, we find a quantum efficiency of 0.69±0.02, well beyond the SQL, by employing a flux-driven Josephson parametric amplifier and broadband thermal signals. We expect that our results allow for fundamental improvements in the detection of ultraweak microwave signals.