Phonon traps reduce the quasiparticle density in superconducting circuits

  1. Fabio Henriques,
  2. Francesco Valenti,
  3. Thibault Charpentier,
  4. Marc Lagoin,
  5. Clement Gouriou,
  6. Maria Martínez,
  7. Laura Cardani,
  8. Lukas Grünhaupt,
  9. Daria Gusenkova,
  10. Julian Ferrero,
  11. Sebastian T. Skacel,
  12. Wolfgang Wernsdorfer,
  13. Alexey V. Ustinov,
  14. Gianluigi Catelani,
  15. Oliver Sander,
  16. and Ioan M. Pop
Out of equilibrium quasiparticles (QPs) are one of the main sources of decoherence in superconducting quantum circuits, and are particularly detrimental in devices with high kinetic
inductance, such as high impedance resonators, qubits, and detectors. Despite significant progress in the understanding of QP dynamics, pinpointing their origin and decreasing their density remain outstanding tasks. The cyclic process of recombination and generation of QPs implies the exchange of phonons between the superconducting thin film and the underlying substrate. Reducing the number of substrate phonons with frequencies exceeding the spectral gap of the superconductor should result in a reduction of QPs. Indeed, we demonstrate that surrounding high impedance resonators made of granular aluminum (grAl) with lower gapped thin film aluminum islands increases the internal quality factors of the resonators in the single photon regime, suppresses the noise, and reduces the rate of observed QP bursts. The aluminum islands are positioned far enough from the resonators to be electromagnetically decoupled, thus not changing the resonator frequency, nor the loading. We therefore attribute the improvements observed in grAl resonators to phonon trapping at frequencies close to the spectral gap of aluminum, well below the grAl gap.

Granular aluminum: A superconducting material for high impedance quantum circuits

  1. Lukas Grünhaupt,
  2. Martin Spiecker,
  3. Daria Gusenkova,
  4. Nataliya Maleeva,
  5. Sebastian T. Skacel,
  6. Ivan Takmakov,
  7. Francesco Valenti,
  8. Patrick Winkel,
  9. Hannes Rotzinger,
  10. Alexey V. Ustinov,
  11. and Ioan M. Pop
Superconducting quantum information processing machines are predominantly based on microwave circuits with relatively low characteristic impedance, of about 100 Ohm, and small anharmonicity,
which can limit their coherence and logic gate fidelity. A promising alternative are circuits based on so-called superinductors, with characteristic impedances exceeding the resistance quantum RQ=6.4 kΩ. However, previous implementations of superinductors, consisting of mesoscopic Josephson junction arrays, can introduce unintended nonlinearity or parasitic resonant modes in the qubit vicinity, degrading its coherence. Here we present a fluxonium qubit design using a granular aluminum (grAl) superinductor strip. Granular aluminum is a particularly attractive material, as it self-assembles into an effective junction array with a remarkably high kinetic inductance, and its fabrication can be in-situ integrated with standard aluminum circuit processing. The measured qubit coherence time TR2 up to 30 μs illustrates the potential of grAl for applications ranging from protected qubit designs to quantum limited amplifiers and detectors.

Quasiparticle dynamics in granular aluminum close to the superconductor to insulator transition

  1. Lukas Grünhaupt,
  2. Nataliya Maleeva,
  3. Sebastian T. Skacel,
  4. Martino Calvo,
  5. Florence Levy-Bertrand,
  6. Alexey V. Ustinov,
  7. Hannes Rotzinger,
  8. Alessandro Monfardini,
  9. Gianluigi Catelani,
  10. and Ioan M. Pop
Superconducting high kinetic inductance elements constitute a valuable resource for quantum circuit design and millimeter-wave detection. Granular aluminum (GrAl) in the superconducting
regime is a particularly interesting material since it has already shown a kinetic inductance in the range of nH/◻ and its deposition is compatible with conventional Al/AlOx/Al Josephson junction fabrication. We characterize microwave resonators fabricated from GrAl with a room temperature resistivity of 4×103μΩ⋅cm, which is a factor of 3 below the superconductor to insulator transition, showing a kinetic inductance fraction close to unity. The measured internal quality factors are on the order of Qi=105 in the single photon regime, and we demonstrate that non-equilibrium quasiparticles (QP) constitute the dominant loss mechanism. We extract QP relaxation times in the range of 1 s and we observe QP bursts every ∼20 s. The current level of coherence of GrAl resonators makes them attractive for integration in quantum devices, while it also evidences the need to reduce the density of non-equilibrium QPs.

An argon ion beam milling process for native AlOx layers enabling coherent superconducting contacts

  1. Lukas Grünhaupt,
  2. Uwe von Lüpke,
  3. Daria Gusenkova,
  4. Sebastian T. Skacel,
  5. Nataliya Maleeva,
  6. Steffen Schlör,
  7. Alexander Bilmes,
  8. Hannes Rotzinger,
  9. Alexey V. Ustinov,
  10. Martin Weides,
  11. and Ioan M. Pop
We present an argon ion beam milling process to remove the native oxide layer forming on aluminum thin films due to their exposure to atmosphere in between lithographic steps. Our cleaning
process is readily integrable with conventional fabrication of Josephson junction quantum circuits. From measurements of the internal quality factors of superconducting microwave resonators with and without contacts, we place an upper bound on the residual resistance of an ion beam milled contact of 50mΩ⋅μm2 at a frequency of 4.5 GHz. Resonators for which only 6% of the total foot-print was exposed to the ion beam milling, in areas of low electric and high magnetic field, showed quality factors above 106 in the single photon regime, and no degradation compared to single layer samples. We believe these results will enable the development of increasingly complex superconducting circuits for quantum information processing.

Concentric transmon qubit featuring fast tunability and site-selective Z coupling

  1. Jochen Braumüller,
  2. Martin Sandberg,
  3. Michael R. Vissers,
  4. Andre Schneider,
  5. Steffen Schlör,
  6. Lukas Grünhaupt,
  7. Hannes Rotzinger,
  8. Michael Marthaler,
  9. Alexander Lukashenko,
  10. Amadeus Dieter,
  11. Alexey V. Ustinov,
  12. Martin Weides,
  13. and David P. Pappas
We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a simple fabrication process using Al evaporation and lift-off
lithography, we observe qubit lifetimes and coherence times in the order of 10us. We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. The presented qubit design features a passive direct Z coupling between neighboring qubits, being a pending quest in the field of quantum simulation.