Quantum trajectories and their statistics for remotely entangled quantum bits

  1. Areeya Chantasri,
  2. Mollie E. Kimchi-Schwartz,
  3. Nicolas Roch,
  4. Irfan Siddiqi,
  5. and Andrew N. Jordan
We experimentally and theoretically investigate the quantum trajectories of jointly monitored transmon qubits embedded in spatially separated microwave cavities. Using nearly quantum-noise
limited superconducting amplifiers and an optimized setup to reduce signal loss between cavities, we can efficiently track measurement-induced entanglement generation as a continuous process for single realizations of the experiment. The quantum trajectories of transmon qubits naturally split into low and high entanglement classes corresponding to half-parity collapse. The distribution of concurrence is found at any given time and we explore the dynamics of entanglement creation in the state space. The distribution exhibits a sharp cut-off in the high concurrence limit, defining a maximal concurrence boundary. The most likely paths of the qubits‘ trajectories are also investigated, resulting in three probable paths, gradually projecting the system to two even subspaces and an odd subspace. We also investigate the most likely time for the individual trajectories to reach their most entangled state, and find that there are two solutions for the local maximum, corresponding to the low and high entanglement routes. The theoretical predictions show excellent agreement with the experimental entangled qubit trajectory data.

Cooling and Autonomous Feedback in a Bose-Hubbard chain

  1. Shay Hacohen-Gourgy,
  2. Vinay Ramasesh,
  3. Claudia De Grandi,
  4. Irfan Siddiqi,
  5. and Steve M. Girvin
We engineer a quantum bath that enables entropy and energy exchange with a one-dimensional Bose-Hubbard lattice with attractive on-site interactions. We implement this in an array of
three superconducting transmon qubits coupled to a single cavity mode; the transmons represent lattice sites and their excitation quanta embody bosonic particles. Our cooling protocol preserves particle number–realizing a canonical ensemble– and also affords the efficient preparation of dark states which, due to symmetry, cannot be prepared via coherent drives on the cavity. Furthermore, by applying continuous microwave radiation, we also realize autonomous feedback to indefinitely stabilize particular eigenstates of the array.

Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits

  1. Nicolas Roch,
  2. Mollie E. Schwartz,
  3. Felix Motzoi,
  4. Christopher Macklin,
  5. Rajamani Vijay,
  6. Andrew W. Eddins,
  7. Alexander N. Korotkov,
  8. K. Birgitta Whaley,
  9. Mohan Sarovar,
  10. and Irfan Siddiqi
The creation of a quantum network requires the distribution of coherent information across macroscopic distances. We demonstrate the entanglement of two superconducting qubits, separated
by more than a meter of coaxial cable, by designing a joint measurement that probabilistically projects onto an entangled state. By using a continuous measurement scheme, we are further able to observe single quantum trajectories of the joint two-qubit state, confirming the validity of the quantum Bayesian formalism for a cascaded system. Our results allow us to resolve the dynamics of continuous projection onto the entangled manifold, in quantitative agreement with theory.

Design and characterization of a lumped element single-ended superconducting microwave parametric amplifier with on-chip flux bias line

  1. Josh Mutus,
  2. Ted White,
  3. Evan Jeffery,
  4. Daniel Sank,
  5. Rami Barends,
  6. Joerg Bochmann,
  7. Yu Chen,
  8. Zijun Chen,
  9. Ben Chiaro,
  10. Andrew Dunsworth,
  11. Julian Kelly,
  12. Anthony Megrant,
  13. Charles Neill,
  14. Peter O'malley,
  15. Pedram Roushan,
  16. Amit Vainsencher,
  17. Jim Wenner,
  18. Irfan Siddiqi,
  19. Rajamani Vijayaraghavan,
  20. Andrew Cleland,
  21. and John Martinis
We demonstrate a lumped-element Josephson Parametric Amplifier (LJPA), using a single-ended design that includes an on-chip, high-bandwidth flux bias line. The amplifier can be pumped
into its region of parametric gain through either the input port or through the flux bias line. Broadband amplification is achieved at a tunable frequency $\omega/2 \pi$ between 5 to 7 GHz with quantum-limited noise performance, a gain-bandwidth product greater than 500 MHz, and an input saturation power in excess of -120 dBm. The bias line allows fast frequency tuning of the amplifier, with variations of hundreds of MHz over time scales shorter than 10 ns.

Analog Superconducting Quantum Simulator for Holstein Polarons

  1. Feng Mei,
  2. Vladimir M. Stojanovic,
  3. Irfan Siddiqi,
  4. and Lin Tian
We propose an analog quantum simulator for the Holstein molecular-crystal model based on a dispersive superconducting circuit QED system composed of transmon qubits and microwave resonators.
By varying the circuit parameters, one can readily access both the adiabatic and the anti-adiabatic regimes of this model, and realize the coupling strengths required for small-polaron formation. We present a pumping scheme for preparing small-polaron states of arbitrary quasimomentum within time scales much shorter than the qubit decoherence time. The ground state of the system is characterized by anomalous amplitude fluctuation and measurement-based momentum squeezing in the resonator modes.