The QICK (Quantum Instrumentation Control Kit): Readout and control for qubits and detectors

  1. Leandro Stefanazzi,
  2. Ken Treptow,
  3. Neal Wilcer,
  4. Chris Stoughton,
  5. Salvatore Montella,
  6. Collin Bradford,
  7. Gustavo Cancelo,
  8. Shefali Saxena,
  9. Horacio Arnaldi,
  10. Sara Sussman,
  11. Andrew Houck,
  12. Ankur Agrawal,
  13. Helin Zhang,
  14. Chunyang Ding,
  15. and David I. Schuster
We introduce a Xilinx RFSoC-based qubit controller (called the Quantum Instrumentation Control Kit, or QICK for short) which supports the direct synthesis of control pulses with carrier
frequencies of up to 6 GHz. The QICK can control multiple qubits or other quantum devices. The QICK consists of a digital board hosting an RFSoC (RF System-on-Chip) FPGA \cite{zcu111}, custom firmware and software and an optional companion custom-designed analog front-end board. We characterize the analog performance of the system, as well as its digital latency, important for quantum error correction and feedback protocols. We benchmark the controller by performing standard characterizations of a transmon qubit. We achieve an average Clifford gate fidelity of avg=99.93%. All of the schematics, firmware, and software are open-source \cite{QICKrepo}.

Moving beyond the transmon: Noise-protected superconducting quantum circuits

  1. András Gyenis,
  2. Agustin Di Paolo,
  3. Jens Koch,
  4. Alexandre Blais,
  5. Andrew A. Houck,
  6. and David I. Schuster
Artificial atoms realized by superconducting circuits offer unique opportunities to store and process quantum information with high fidelity. Among them, implementations of circuits
that harness intrinsic noise protection have been rapidly developed in recent years. These noise-protected devices constitute a new class of qubits in which the computational states are largely decoupled from local noise channels. The main challenges in engineering such systems are simultaneously guarding against both bit- and phase-flip errors, and also ensuring high-fidelity qubit control. Although partial noise protection is possible in superconducting circuits relying on a single quantum degree of freedom, the promise of complete protection can only be fulfilled by implementing multimode or hybrid circuits. This Perspective reviews the theoretical principles at the heart of these new qubits, describes recent experiments, and highlights the potential of robust encoding of quantum information in superconducting qubits.

Electron on solid neon — a new solid-state single-electron qubit platform

  1. Xianjing Zhou,
  2. Gerwin Koolstra,
  3. Xufeng Zhang,
  4. Ge Yang,
  5. Xu Han,
  6. Brennan Dizdar,
  7. Divan Ralu,
  8. Wei Guo,
  9. Kater W. Murch,
  10. David I. Schuster,
  11. and Dafei Jin
The promise of quantum computing has driven a persistent quest for new qubit platforms with long coherence, fast operation, and large scalability. Electrons, ubiquitous elementary particles
of nonzero charge, spin, and mass, have commonly been perceived as paradigmatic local quantum information carriers. Despite superior controllability and configurability, their practical performance as qubits via either motional or spin states depends critically on their material environment. Here we report our experimental realization of a new qubit platform based upon isolated single electrons trapped on an ultraclean solid neon surface in vacuum. By integrating an electron trap in a circuit quantum electrodynamics architecture, we achieve strong coupling between the motional states of a single electron and microwave photons in an on-chip superconducting resonator. Qubit gate operations and dispersive readout are used to measure the energy relaxation time T1 of 15 μs and phase coherence time T2 over 200 ns, indicating that the electron-on-solid-neon qubit already performs near the state of the art as a charge qubit.

Tomography in the presence of stray inter-qubit coupling

  1. Tanay Roy,
  2. Ziqian Li,
  3. Eliot Kapit,
  4. and David I. Schuster
Tomography is an indispensable part of quantum computation as it enables diagnosis of a quantum process through state reconstruction. Existing tomographic protocols are based on determining
expectation values of various Pauli operators which typically require single-qubit rotations. However, in realistic systems, qubits often develop some form of unavoidable stray coupling making it difficult to manipulate one qubit independent of its partners. Consequently, standard protocols applied to those systems result in unfaithful reproduction of the true quantum state. We have developed a protocol, called coupling compensated tomography, that can correct for errors due to parasitic couplings completely in software and accurately determine the quantum state. We demonstrate the performance of our scheme on a system of two transmon qubits with always-on ZZ coupling. Our technique is a generic tomography tool that can be applied to large systems with different types of stray inter-qubit couplings and facilitates the use of arbitrary tomography pulses and even non-orthogonal axes of rotation.

Deterministic multi-qubit entanglement in a quantum network

  1. Youpeng Zhong,
  2. Hung-Shen Chang,
  3. Audrey Bienfait,
  4. Étienne Dumur,
  5. Ming-Han Chou,
  6. Christopher R. Conner,
  7. Joel Grebel,
  8. Rhys G. Povey,
  9. Haoxiong Yan,
  10. David I. Schuster,
  11. and Andrew N. Cleland
Quantum entanglement is a key resource for quantum computation and quantum communication cite{Nielsen2010}. Scaling to large quantum communication or computation networks further requires
the deterministic generation of multi-qubit entanglement \cite{Gottesman1999,Duan2001,Jiang2007}. The deterministic entanglement of two remote qubits has recently been demonstrated with microwave photons \cite{Kurpiers2018,Axline2018,Campagne2018,Leung2019,Zhong2019}, optical photons \cite{Humphreys2018} and surface acoustic wave phonons \cite{Bienfait2019}. However, the deterministic generation and transmission of multi-qubit entanglement has not been demonstrated, primarily due to limited state transfer fidelities. Here, we report a quantum network comprising two separate superconducting quantum nodes connected by a 1 meter-long superconducting coaxial cable, where each node includes three interconnected qubits. By directly connecting the coaxial cable to one qubit in each node, we can transfer quantum states between the nodes with a process fidelity of 0.911±0.008. Using the high-fidelity communication link, we can prepare a three-qubit Greenberger-Horne-Zeilinger (GHZ) state \cite{Greenberger1990,Neeley2010,Dicarlo2010} in one node and deterministically transfer this state to the other node, with a transferred state fidelity of 0.656±0.014. We further use this system to deterministically generate a two-node, six-qubit GHZ state, globally distributed within the network, with a state fidelity of 0.722±0.021. The GHZ state fidelities are clearly above the threshold of 1/2 for genuine multipartite entanglement \cite{Guhne2010}, and show that this architecture can be used to coherently link together multiple superconducting quantum processors, providing a modular approach for building large-scale quantum computers \cite{Monroe2014,Chou2018}.

Seamless high-Q microwave cavities for multimode circuit QED

  1. Srivatsan Chakram,
  2. Andrew E. Oriani,
  3. Ravi K. Naik,
  4. Akash V. Dixit,
  5. Kevin He,
  6. Ankur Agrawal,
  7. Hyeokshin Kwon,
  8. and David I. Schuster
Multimode cavity quantum electrodynamics —where a two level system interacts simultaneously with many cavity modes—provides a versatile framework for quantum information
processing and quantum optics. Due to the combination of long coherence times and large interaction strengths, one of the leading experimental platforms for cavity QED involves coupling a superconducting circuit to a 3D microwave cavity. In this work, we realize a 3D multimode circuit QED system with single photon lifetimes of 2 ms and cooperativities of 0.5−1.5×109 across 9 modes of a novel seamless cavity. We demonstrate a variety of protocols for universal single-mode quantum control applicable across all cavity modes, using only a single drive line. We achieve this by developing a straightforward flute method for creating monolithic superconducting microwave cavities that reduces loss while simultaneously allowing control of the mode spectrum and mode-qubit interaction. We highlight the flexibility and ease of implementation of this technique by using it to fabricate a variety of 3D cavity geometries, providing a template for engineering multimode quantum systems with exceptionally low dissipation. This work is an important step towards realizing hardware efficient random access quantum memories and processors, and for exploring quantum many-body physics with photons.

Multimode photon blockade

  1. Srivatsan Chakram,
  2. Kevin He,
  3. Akash V. Dixit,
  4. Andrew E. Oriani,
  5. Ravi K. Naik,
  6. Nelson Leung,
  7. Hyeokshin Kwon,
  8. Wen-Long Ma,
  9. Liang Jiang,
  10. and David I. Schuster
Interactions are essential for the creation of correlated quantum many-body states. While two-body interactions underlie most natural phenomena, three- and four-body interactions are
important for the physics of nuclei [1], exotic few-body states in ultracold quantum gases [2], the fractional quantum Hall effect [3], quantum error correction [4], and holography [5, 6]. Recently, a number of artificial quantum systems have emerged as simulators for many-body physics, featuring the ability to engineer strong interactions. However, the interactions in these systems have largely been limited to the two-body paradigm, and require building up multi-body interactions by combining two-body forces. Here, we demonstrate a pure N-body interaction between microwave photons stored in an arbitrary number of electromagnetic modes of a multimode cavity. The system is dressed such that there is collectively no interaction until a target total photon number is reached across multiple distinct modes, at which point they interact strongly. The microwave cavity features 9 modes with photon lifetimes of ∼2 ms coupled to a superconducting transmon circuit, forming a multimode circuit QED system with single photon cooperativities of ∼109. We generate multimode interactions by using cavity photon number resolved drives on the transmon circuit to blockade any multiphoton state with a chosen total photon number distributed across the target modes. We harness the interaction for state preparation, preparing Fock states of increasing photon number via quantum optimal control pulses acting only on the cavity modes. We demonstrate multimode interactions by generating entanglement purely with uniform cavity drives and multimode photon blockade, and characterize the resulting two- and three-mode W states using a new protocol for multimode Wigner tomography.

Searching for Dark Matter with a Superconducting Qubit

  1. Akash V. Dixit,
  2. Srivatsan Chakram,
  3. Kevin He,
  4. Ankur Agrawal,
  5. Ravi K. Naik,
  6. David I. Schuster,
  7. and Aaron Chou
The gravitational evidence for the existence of dark matter is extensive, yet thus far, dark matter has evaded direct detection in terrestrial experiments. Detection mechanisms for
low mass dark matter candidates such as the axion or hidden photon leverage potential interactions with electromagnetic fields, whereby the dark matter (of unknown mass) on rare occasion converts into a single photon. Current dark matter searches operating at microwave frequencies, use a resonant cavity to coherently accumulate the field sourced by the dark matter and use a quantum limited linear amplifier to read out the cavity signal. Here, we report the development of a novel microwave photon counting technique and use it to set a new exclusion limit on hidden photon dark matter. We constrain the kinetic mixing angle to ϵ≤1.82×10−15 in a narrow band around 6.011 GHz (24.86 μeV) with an integration time of 8.33 s. We operate a superconducting qubit to make repeated quantum non-demolition measurements of cavity photons and apply a hidden Markov model analysis to reduce the noise to 15.7 dB below the quantum limit, with performance limited by the residual population of the system. The techniques presented here will dramatically improve the sensitivity of future dark matter searches in the range of 3-30 GHz and are generally applicable to measurements that require high sensitivity to inherently low signal photon rates.

Engineering Dynamical Sweet Spots to Protect Qubits from 1/f Noise

  1. Ziwen Huang,
  2. Pranav S. Mundada,
  3. András Gyenis,
  4. David I. Schuster,
  5. Andrew A. Houck,
  6. and Jens Koch
Protecting superconducting qubits from low-frequency noise is essential for advancing superconducting quantum computation. We here introduce a protocol for engineering dynamical sweet
spots which reduce the susceptibility of a qubit to low-frequency noise. Based on the application of periodic drives, the location of the dynamical sweet spots can be obtained analytically in the framework of Floquet theory. In particular, for the example of fluxonium biased slightly away from half a flux quantum, we predict an enhancement of pure-dephasing by three orders of magnitude. Employing the Floquet eigenstates as the computational basis, we show that high-fidelity single-qubit gates can be implemented while maintaining dynamical sweet-spot operation. We further confirm that qubit readout can be performed by adiabatically mapping the Floquet states back to the static qubit states, and subsequently applying standard measurement techniques. Our work provides an intuitive tool to encode quantum information in robust, time-dependent states, and may be extended to alternative architectures for quantum information processing.

Universal fast flux control of a coherent, low-frequency qubit

  1. Helin Zhang,
  2. Srivatsan Chakram,
  3. Tanay Roy,
  4. Nathan Earnest,
  5. Yao Lu,
  6. Ziwen Huang,
  7. Daniel Weiss,
  8. Jens Koch,
  9. and David I. Schuster
The extit{heavy-fluxonium} circuit is a promising building block for superconducting quantum processors due to its long relaxation and dephasing time at the half-flux frustration
point. However, the suppressed charge matrix elements and low transition frequency have made it challenging to perform fast single-qubit gates using standard protocols. We report on new protocols for reset, fast coherent control, and readout, that allow high-quality operation of the qubit with a 14 MHz transition frequency, an order of magnitude lower in energy than the ambient thermal energy scale. We utilize higher levels of the fluxonium to initialize the qubit with 97\% fidelity, corresponding to cooling it to 190 μK. We realize high-fidelity control using a universal set of single-cycle flux gates, which are comprised of directly synthesizable fast pulses, while plasmon-assisted readout is used for measurements. On a qubit with T1,T2e∼~300~μs, we realize single-qubit gates in 20−60~ns with an average gate fidelity of 99.8% as characterized by randomized benchmarking.