Processing quantum information using quantum three-level systems or qutrits as the fundamental unit is an alternative to contemporary qubit-based architectures with the potential toprovide significant computational advantages. We demonstrate a fully programmable two-qutrit quantum processor by utilizing the third energy eigenstates of two transmons. We develop a parametric coupler to achieve excellent connectivity in the nine-dimensional Hilbert space enabling efficient implementations of two-qutrit gates. We characterize our processor by realizing several algorithms like Deutsch-Jozsa, Bernstein-Vazirani, and Grover’s search. Our efficient ancilla-free protocols allow us to show that two stages of Grover’s amplification can improve the success rates of an unstructured search with quantum advantage. Our results pave the way for building fully programmable ternary quantum processors using transmons as building blocks for a universal quantum computer.
Long coherence times, large anharmonicity and robust charge-noise insensitivity render fluxonium qubits an interesting alternative to transmons. Recent experiments have demonstratedrecord coherence times for low-frequency fluxonia. Here, we propose a galvanic-coupling scheme with flux-tunable XX coupling. To implement a high-fidelity entangling iSWAP‾‾‾‾‾‾‾√ gate, we modulate the strength of this coupling and devise variable-time identity gates to synchronize required single-qubit operations. Both types of gates are implemented using strong ac flux drives, lasting for only a few drive periods. We employ a theoretical framework capable of capturing qubit dynamics beyond the rotating-wave approximation (RWA) as required for such strong drives. We predict an open-system fidelity of F>0.999 for the iSWAP‾‾‾‾‾‾‾√ gate under realistic conditions.
We introduce a Xilinx RFSoC-based qubit controller (called the Quantum Instrumentation Control Kit, or QICK for short) which supports the direct synthesis of control pulses with carrierfrequencies of up to 6 GHz. The QICK can control multiple qubits or other quantum devices. The QICK consists of a digital board hosting an RFSoC (RF System-on-Chip) FPGA \cite{zcu111}, custom firmware and software and an optional companion custom-designed analog front-end board. We characterize the analog performance of the system, as well as its digital latency, important for quantum error correction and feedback protocols. We benchmark the controller by performing standard characterizations of a transmon qubit. We achieve an average Clifford gate fidelity of avg=99.93%. All of the schematics, firmware, and software are open-source \cite{QICKrepo}.
Artificial atoms realized by superconducting circuits offer unique opportunities to store and process quantum information with high fidelity. Among them, implementations of circuitsthat harness intrinsic noise protection have been rapidly developed in recent years. These noise-protected devices constitute a new class of qubits in which the computational states are largely decoupled from local noise channels. The main challenges in engineering such systems are simultaneously guarding against both bit- and phase-flip errors, and also ensuring high-fidelity qubit control. Although partial noise protection is possible in superconducting circuits relying on a single quantum degree of freedom, the promise of complete protection can only be fulfilled by implementing multimode or hybrid circuits. This Perspective reviews the theoretical principles at the heart of these new qubits, describes recent experiments, and highlights the potential of robust encoding of quantum information in superconducting qubits.
The promise of quantum computing has driven a persistent quest for new qubit platforms with long coherence, fast operation, and large scalability. Electrons, ubiquitous elementary particlesof nonzero charge, spin, and mass, have commonly been perceived as paradigmatic local quantum information carriers. Despite superior controllability and configurability, their practical performance as qubits via either motional or spin states depends critically on their material environment. Here we report our experimental realization of a new qubit platform based upon isolated single electrons trapped on an ultraclean solid neon surface in vacuum. By integrating an electron trap in a circuit quantum electrodynamics architecture, we achieve strong coupling between the motional states of a single electron and microwave photons in an on-chip superconducting resonator. Qubit gate operations and dispersive readout are used to measure the energy relaxation time T1 of 15 μs and phase coherence time T2 over 200 ns, indicating that the electron-on-solid-neon qubit already performs near the state of the art as a charge qubit.
Tomography is an indispensable part of quantum computation as it enables diagnosis of a quantum process through state reconstruction. Existing tomographic protocols are based on determiningexpectation values of various Pauli operators which typically require single-qubit rotations. However, in realistic systems, qubits often develop some form of unavoidable stray coupling making it difficult to manipulate one qubit independent of its partners. Consequently, standard protocols applied to those systems result in unfaithful reproduction of the true quantum state. We have developed a protocol, called coupling compensated tomography, that can correct for errors due to parasitic couplings completely in software and accurately determine the quantum state. We demonstrate the performance of our scheme on a system of two transmon qubits with always-on ZZ coupling. Our technique is a generic tomography tool that can be applied to large systems with different types of stray inter-qubit couplings and facilitates the use of arbitrary tomography pulses and even non-orthogonal axes of rotation.
Quantum entanglement is a key resource for quantum computation and quantum communication cite{Nielsen2010}. Scaling to large quantum communication or computation networks further requiresthe deterministic generation of multi-qubit entanglement \cite{Gottesman1999,Duan2001,Jiang2007}. The deterministic entanglement of two remote qubits has recently been demonstrated with microwave photons \cite{Kurpiers2018,Axline2018,Campagne2018,Leung2019,Zhong2019}, optical photons \cite{Humphreys2018} and surface acoustic wave phonons \cite{Bienfait2019}. However, the deterministic generation and transmission of multi-qubit entanglement has not been demonstrated, primarily due to limited state transfer fidelities. Here, we report a quantum network comprising two separate superconducting quantum nodes connected by a 1 meter-long superconducting coaxial cable, where each node includes three interconnected qubits. By directly connecting the coaxial cable to one qubit in each node, we can transfer quantum states between the nodes with a process fidelity of 0.911±0.008. Using the high-fidelity communication link, we can prepare a three-qubit Greenberger-Horne-Zeilinger (GHZ) state \cite{Greenberger1990,Neeley2010,Dicarlo2010} in one node and deterministically transfer this state to the other node, with a transferred state fidelity of 0.656±0.014. We further use this system to deterministically generate a two-node, six-qubit GHZ state, globally distributed within the network, with a state fidelity of 0.722±0.021. The GHZ state fidelities are clearly above the threshold of 1/2 for genuine multipartite entanglement \cite{Guhne2010}, and show that this architecture can be used to coherently link together multiple superconducting quantum processors, providing a modular approach for building large-scale quantum computers \cite{Monroe2014,Chou2018}.
Multimode cavity quantum electrodynamics —where a two level system interacts simultaneously with many cavity modes—provides a versatile framework for quantum informationprocessing and quantum optics. Due to the combination of long coherence times and large interaction strengths, one of the leading experimental platforms for cavity QED involves coupling a superconducting circuit to a 3D microwave cavity. In this work, we realize a 3D multimode circuit QED system with single photon lifetimes of 2 ms and cooperativities of 0.5−1.5×109 across 9 modes of a novel seamless cavity. We demonstrate a variety of protocols for universal single-mode quantum control applicable across all cavity modes, using only a single drive line. We achieve this by developing a straightforward flute method for creating monolithic superconducting microwave cavities that reduces loss while simultaneously allowing control of the mode spectrum and mode-qubit interaction. We highlight the flexibility and ease of implementation of this technique by using it to fabricate a variety of 3D cavity geometries, providing a template for engineering multimode quantum systems with exceptionally low dissipation. This work is an important step towards realizing hardware efficient random access quantum memories and processors, and for exploring quantum many-body physics with photons.
Interactions are essential for the creation of correlated quantum many-body states. While two-body interactions underlie most natural phenomena, three- and four-body interactions areimportant for the physics of nuclei [1], exotic few-body states in ultracold quantum gases [2], the fractional quantum Hall effect [3], quantum error correction [4], and holography [5, 6]. Recently, a number of artificial quantum systems have emerged as simulators for many-body physics, featuring the ability to engineer strong interactions. However, the interactions in these systems have largely been limited to the two-body paradigm, and require building up multi-body interactions by combining two-body forces. Here, we demonstrate a pure N-body interaction between microwave photons stored in an arbitrary number of electromagnetic modes of a multimode cavity. The system is dressed such that there is collectively no interaction until a target total photon number is reached across multiple distinct modes, at which point they interact strongly. The microwave cavity features 9 modes with photon lifetimes of ∼2 ms coupled to a superconducting transmon circuit, forming a multimode circuit QED system with single photon cooperativities of ∼109. We generate multimode interactions by using cavity photon number resolved drives on the transmon circuit to blockade any multiphoton state with a chosen total photon number distributed across the target modes. We harness the interaction for state preparation, preparing Fock states of increasing photon number via quantum optimal control pulses acting only on the cavity modes. We demonstrate multimode interactions by generating entanglement purely with uniform cavity drives and multimode photon blockade, and characterize the resulting two- and three-mode W states using a new protocol for multimode Wigner tomography.
The gravitational evidence for the existence of dark matter is extensive, yet thus far, dark matter has evaded direct detection in terrestrial experiments. Detection mechanisms forlow mass dark matter candidates such as the axion or hidden photon leverage potential interactions with electromagnetic fields, whereby the dark matter (of unknown mass) on rare occasion converts into a single photon. Current dark matter searches operating at microwave frequencies, use a resonant cavity to coherently accumulate the field sourced by the dark matter and use a quantum limited linear amplifier to read out the cavity signal. Here, we report the development of a novel microwave photon counting technique and use it to set a new exclusion limit on hidden photon dark matter. We constrain the kinetic mixing angle to ϵ≤1.82×10−15 in a narrow band around 6.011 GHz (24.86 μeV) with an integration time of 8.33 s. We operate a superconducting qubit to make repeated quantum non-demolition measurements of cavity photons and apply a hidden Markov model analysis to reduce the noise to 15.7 dB below the quantum limit, with performance limited by the residual population of the system. The techniques presented here will dramatically improve the sensitivity of future dark matter searches in the range of 3-30 GHz and are generally applicable to measurements that require high sensitivity to inherently low signal photon rates.