The ubiquitous noise in quantum system hinders the advancement of quantum information processing and has driven the emergence of different hardware-efficient quantum error correctionprotocols. Among them, qubits with structured noise, especially with biased noise, are one of the most promising platform to achieve fault-tolerance due to the high error thresholds of quantum error correction codes tailored for them. Nevertheless, their quantum operations are challenging and the demonstration of their performance beyond the fault-tolerant threshold remain incomplete. Here, we leverage Schrödinger cat states in a scalable planar superconducting nonlinear oscillator to thoroughly characterize the high-fidelity single-qubit quantum operations with systematic quantum tomography and benchmarking tools, demonstrating the state-of-the-art performance of operations crossing the fault-tolerant threshold of the XZZX surface code. These results thus embody a transformative milestone in the exploration of quantum systems with structured error channels. Notably, our framework is extensible to other types of structured-noise systems, paving the way for systematic characterization and validation of novel quantum platforms with structured noise.
The Kerr-cat qubit is a bosonic qubit in which multi-photon Schrodinger cat states are stabilized by applying a two-photon drive to an oscillator with a Kerr nonlinearity. The suppressedbit-flip rate with increasing cat size makes this qubit a promising candidate to implement quantum error correction codes tailored for noise-biased qubits. However, achieving strong light-matter interactions necessary for stabilizing and controlling this qubit has traditionally required strong microwave drives that heat the qubit and degrade its performance. In contrast, increasing the coupling to the drive port removes the need for strong drives at the expense of large Purcell decay. By integrating an effective band-block filter on-chip, we overcome this trade-off and realize a Kerr-cat qubit in a scalable 2D superconducting circuit with high coherence. This filter provides 30 dB of isolation at the qubit frequency with negligible attenuation at the frequencies required for stabilization and readout. We experimentally demonstrate quantum non-demolition readout fidelity of 99.6% for a cat with 8 photons. Also, to have high-fidelity universal control over this qubit, we combine fast Rabi oscillations with a new demonstration of the X(90) gate through phase modulation of the stabilization drive. Finally, the lifetime in this architecture is examined as a function of the cat size of up to 10 photons in the oscillator achieving a bit-flip time higher than 1 ms and only a linear decrease in the phase-flip time, in good agreement with the theoretical analysis of the circuit. Our qubit shows promise as a building block for fault-tolerant quantum processors with a small footprint.
High-dimensional quantum information processing has emerged as a promising avenue to transcend hardware limitations and advance the frontiers of quantum technologies. Harnessing theuntapped potential of the so-called qudits necessitates the development of quantum protocols beyond the established qubit methodologies. Here, we present a robust, hardware-efficient, and extensible approach for operating multidimensional solid-state systems using Raman-assisted two-photon interactions. To demonstrate its efficacy, we construct a set of multi-qubit operations, realize highly entangled multidimensional states including atomic squeezed states and Schrödinger cat states, and implement programmable entanglement distribution along a qudit array. Our work illuminates the quantum electrodynamics of strongly driven multi-qudit systems and provides the experimental foundation for the future development of high-dimensional quantum applications.