Spin-boson model with an engineered reservoir in circuit quantum electrodynamics

  1. Max Haeberlein,
  2. Frank Deppe,
  3. Andreas Kurcz,
  4. Jan Goetz,
  5. Alexander Baust,
  6. Peter Eder,
  7. Kirill Fedorov,
  8. Michael Fischer,
  9. Edwin P. Menzel,
  10. Manuel J. Schwarz,
  11. Friedrich Wulschner,
  12. Edwar Xie,
  13. Ling Zhong,
  14. Enrique Solano,
  15. Achim Marx,
  16. Juan José García-Ripoll,
  17. and Rudolf Gross
A superconducting qubit coupled to an open transmission line represents an implementation of the spin-boson model with a broadband environment. We show that this environment can be
engineered by introducing partial reflectors into the transmission line, allowing to shape the spectral function, J({\omega}), of the spin-boson model. The spectral function can be accessed by measuring the resonance fluorescence of the qubit, which provides information on both the engineered environment and the coupling between qubit and transmission line. The spectral function of a transmission line without partial reflectors is found to be Ohmic over a wide frequency range, whereas a peaked spectral density is found for the shaped environment. Our work lays the ground for future quantum simulations of other, more involved, impurity models with superconducting circuits.

Hybrid quantum magnetism in circuit-QED: from spin-photon waves to many-body spectroscopy

  1. Andreas Kurcz,
  2. Alejandro Bermudez,
  3. and Juan Jose García-Rípoll
We introduce a model of quantum magnetism induced by the non-perturbative exchange of microwave photons between distant superconducting qubits. By interconnecting qubits and cavities,
we obtain a spin-boson lattice model that exhibits a quantum phase transition where both qubits and cavities spontaneously polarise. We present a many-body ansatz that captures this phenomenon all the way, from a the perturbative dispersive regime where photons can be traced out, to the non-perturbative ultra-strong coupling regime where photons must be treated on the same footing as qubits. Our ansatz also reproduces the low-energy excitations, which are described by hybridised spin-photon quasiparticles, and can be probed spectroscopically from transmission experiments in circuit-QED, as shown by simulating a possible experiment by Matrix-Product-State methods.

Bose-Hubbard models with photon pairing in circuit-QED

  1. Benjamin Villalonga Correa,
  2. Andreas Kurcz,
  3. and J.J. Garcia-Ripoll
In this work we study a family of bosonic lattice models that combine an on-site repulsion term with a nearest-neighbor pairing term, $sum_{< i,j>} a^dagger_i a^dagger_j + mathrm{H.c.}$
Like the original Bose-Hubbard model, the nearest-neighbor term is responsible for the mobility of bosons and it competes with the local interaction, inducing two-mode squeezing. However, unlike a trivial hopping, the counter-rotating terms form pairing cannot be studied with a simple mean-field theory and does not present a quantum phase transition in phase space. Instead, we show that there is a cross-over from a pure insulator to long-range correlations that start up as soon as the two-mode squeezing is switched on. We also show how this model can be naturally implemented using coupled microwave resonators and superconducting qubits.