Simple, robust and on-demand generation of single and correlated photons

  1. Sankar Raman Sathyamoorthy,
  2. Andreas Bengtsson,
  3. Per Delsing,
  4. and Göran Johansson
We propose two different setups to generate single photons on demand using an atom in front of a mirror, along with either a beam-splitter or a tunable coupling. We show that photon
generation efficiency ~ 99% is straightforward to achieve. The proposed schemes are simple and easily tunable in frequency. The operation is relatively insensitive to dephasing and can be easily extended to generate correlated pairs of photons. They can also in principle be used to generate any photonic qubit in arbitrary wave-packets, making them very attractive for quantum communication applications.

Single-shot Readout of a Superconducting Qubit using a Josephson Parametric Oscillator

  1. Philip Krantz,
  2. Andreas Bengtsson,
  3. Michaël Simoen,
  4. Simon Gustavsson,
  5. Vitaly Shumeiko,
  6. W. D. Oliver,
  7. C. M. Wilson,
  8. Per Delsing,
  9. and Jonas Bylander
We present a new read-out technique for a superconducting qubit dispersively coupled to a Josephson parametric oscillator. We perform degenerate parametric flux pumping of the Josephson
inductance with a pump amplitude surpassing the threshold for parametric instability. We map the qubit states onto two distinct states of classical parametric oscillations: one oscillating state, with on average 180 photons in the resonator, and one with zero oscillation amplitude. We demonstrate single-shot readout performance, with a total state discrimination of 81.5%. When accounting for qubit errors, this gives a corrected fidelity of 98.7%, obviating the need for a following quantum-limited amplifier. An error budget indicates that the readout fidelity is currently limited by spurious switching events between two bistable states of the resonator.