Leakage, the occupation of any state not used in the computation, is one of the of the most devastating errors in quantum error correction. Transmons, the most common superconductingqubits, are weakly anharmonic multilevel systems, and are thus prone to this type of error. Here we demonstrate a device which reduces the lifetimes of the leakage states in the transmon by three orders of magnitude, while protecting the qubit lifetime and the single-qubit gate fidelties. To do this we attach a qubit through an on-chip seventh-order Chebyshev filter to a cold resistor. The filter is engineered such that the leakage transitions are in its passband, while the qubit transition is in its stopband. Dissipation through the filter reduces the lifetime of the transmon’s f state, the lowest energy leakage state, by three orders of magnitude to 33 ns, while simultaneously keeping the qubit lifetime to greater than 100 μs. Even though the f state is transiently populated during a single qubit gate, no negative effect of the filter is detected with errors per gate approaching 1e-4. Modelling the filter as coupled linear harmonic oscillators, our theoretical analysis of the device corroborate our experimental findings. This leakage reduction unit turns leakage errors into errors within the qubit subspace that are correctable with traditional quantum error correction. We demonstrate the operation of the filter as leakage reduction unit in a mock-up of a single-qubit quantum error correcting cycle, showing that the filter increases the seepage rate back to the qubit subspace.
Quantum computers will require quantum error correction to reach the low error rates necessary for solving problems that surpass the capabilities of conventional computers. One of thedominant errors limiting the performance of quantum error correction codes across multiple technology platforms is leakage out of the computational subspace arising from the multi-level structure of qubit implementations. Here, we present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation. This operation removes leakage down to our measurement accuracy of 7⋅10−4 in approximately 50ns with a low error of 2.5(1)⋅10−3 on the computational subspace, thereby reaching durations and fidelities comparable to those of single-qubit gates. We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion to close to what can be achieved using leakage-rejection methods which do not scale. Our approach does neither require additional control electronics nor on-chip components and is applicable to both auxiliary and data qubits. These benefits make our method particularly attractive for mitigating leakage in large-scale quantum error correction circuits, a crucial requirement for the practical implementation of fault-tolerant quantum computation.
We develop a new approach to understanding intrinsic mechanisms that cause the T1-decay rate of a multi-level superconducting qubit to depend on the photonic population of a coupled,detuned cavity. Our method yields simple analytic expressions for both the coherently driven or thermally excited cases which are in good agreement with full master equation numerics, and also facilitates direct physical intuition. It also predicts several new phenomena. In particular, we find that in a wide range of settings, the cavity-qubit detuning controls whether a non-zero photonic population increases or decreases qubit Purcell decay. Our method combines insights from a Keldysh treatment of the system, and Lindblad perturbation theory.