Niobium metal occupies nearly 100% of the volume of a typical 2D transmon device. While the aluminum Josephson junction is of utmost importance, maintaining quantum coherence acrossthe entire device means that pair-breaking in Nb leads, capacitive pads, and readout resonators can be a major source of decoherence. The established contributors are surface oxides and hydroxides, as well as absorbed hydrogen and oxygen. Metal encapsulation of freshly grown surfaces with non-oxidizing metals, preferably without breaking the vacuum, is a successful strategy to mitigate these issues. While the positive effects of encapsulation are undeniable, it is important to understand its impact on the macroscopic behavior of niobium films. We present a comprehensive study of the bulk superconducting properties of Nb thin films encapsulated with gold and palladium/gold, and compare them to those of bare Nb films. Magneto-optical imaging, magnetization, resistivity, and London and Campbell penetration depth measurements reveal significant differences in encapsulated samples. Both sputtered, and epitaxial Au-capped films exhibit the highest residual resistivity ratio and superconducting transition temperature, as well as the lowest upper critical field, London penetration depth, and critical current. These results are in good agreement with the microscopic theory of anisotropic normal and superconducting states of Nb. We conclude that pair-breaking in the bulk of niobium films, driven by disorder throughout the film rather than just at the surface, is a significant source of quantum decoherence in transmons. We also conclude that gold capping not only passivates the surface but also affects the properties of the entire film, significantly reducing the scattering rate due to defects likely induced by surface diffusion if the film is not protected immediately after fabrication.
The Josephson junction and shunt capacitor form a transmon qubit, which is the cornerstone of modern quantum computing platforms. For reliable quantum computing, it is important howlong a qubit can remain in a superposition of quantum states, which is determined by the coherence time (T1). The coherence time of a qubit effectively sets the „lifetime“ of usable quantum information, determining how long quantum computations can be performed before errors occur and information is lost. There are several sources of decoherence in transmon qubits, but the predominant one is generally considered to be dielectric losses in the natural oxide layer formed on the surface of the superconductor. In this paper, we present a numerical study of microwave surface losses in planar superconducting antennas of different transmon qubit designs. An asymptotic method for estimating the energy participation ratio in ultrathin films of nanometer scales is proposed, and estimates are given for the limits of achievable minimum RF losses depending on the electrical properties of the surface oxide and the interface of the qubit with the substrate material.
Superconducting radio-frequency (SRF) cavities offer a promising platform for quantum computing due to their long coherence times and large accessible Hilbert spaces, yet integratingnonlinear elements like transmons for control often introduces additional loss. We report a multimode quantum system based on a 2-cell elliptical shaped SRF cavity, comprising two cavity modes weakly coupled to an ancillary transmon circuit, designed to preserve coherence while enabling efficient control of the cavity modes. We mitigate the detrimental effects of the transmon decoherence through careful design optimization that reduces transmon-cavity couplings and participation in the dielectric substrate and lossy interfaces, to achieve single-photon lifetimes of 20.6 ms and 15.6 ms for the two modes, and a pure dephasing time exceeding 40 ms. This marks an order-of-magnitude improvement over prior 3D multimode memories. Leveraging sideband interactions and novel error-resilient protocols, including measurement-based correction and post-selection, we achieve high-fidelity control over quantum states. This enables the preparation of Fock states up to N=20 with fidelities exceeding 95%, the highest reported to date to the authors‘ knowledge, as well as two-mode entanglement with coherence-limited fidelities reaching up to 99.9% after post-selection. These results establish our platform as a robust foundation for quantum information processing, allowing for future extensions to high-dimensional qudit encodings.
Temporal fluctuations in the superconducting qubit lifetime, T1, bring up additional challenges in building a fault-tolerant quantum computer. While the exact mechanisms remain unclear,T1 fluctuations are generally attributed to the strong coupling between the qubit and a few near-resonant two-level systems (TLSs) that can exchange energy with an assemble of thermally fluctuating two-level fluctuators (TLFs) at low frequencies. Here, we report T1 measurements on the qubits with different geometrical footprints and surface dielectrics as a function of the temperature. By analyzing the noise spectrum of the qubit depolarization rate, Γ1=1/T1, we can disentangle the impact of TLSs, non-equilibrium quasiparticles (QPs), and equilibrium (thermally excited) QPs on the variance in Γ1. We find that Γ1 variances in the qubit with a small footprint are more susceptible to the QP and TLS fluctuations than those in the large-footprint qubits. Furthermore, the QP-induced variances in all qubits are consistent with the theoretical framework of QP diffusion and fluctuation. We suggest these findings can offer valuable insights for future qubit design and engineering optimization.