I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
07
Feb
2024
Monitoring the energy of a cavity by observing the emission of a repeatedly excited qubit
The number of excitations in a large quantum system (harmonic oscillator or qudit) can be measured in a quantum non demolition manner using a dispersively coupled qubit. It typically
requires a series of qubit pulses that encode various binary questions about the photon number. Recently, a method based on the fluorescence measurement of a qubit driven by a train of identical pulses was introduced to track the photon number in a cavity, hence simplifying its monitoring and raising interesting questions about the measurement backaction of this scheme. A first realization with superconducting circuits demonstrated how the average number of photons could be measured in this way. Here we present an experiment that reaches single shot photocounting and number tracking owing to a cavity decay rate 4 orders of magnitude smaller than both the dispersive coupling rate and the qubit emission rate. An innovative notch filter and pogo-pin based galvanic contact makes possible these seemingly incompatible features. The qubit dynamics under the pulse train is characterized. We observe quantum jumps by monitoring the photon number via the qubit fluorescence as photons leave the cavity one at a time. Besides, we extract the measurement rate and induced dephasing rate and compare them to theoretical models. Our method could be applied to quantum error correction protocols on bosonic codes or qudits.
Using bi-fluxon tunneling to protect the Fluxonium qubit
Encoding quantum information in quantum states with disjoint wave-function support and noise insensitive energies is the key behind the idea of qubit protection. While fully protected
qubits are expected to offer exponential protection against both energy relaxation and pure dephasing, simpler circuits may grant partial protection with currently achievable parameters. Here, we study a fluxonium circuit in which the wave-functions are engineered to minimize their overlap while benefiting from a first-order-insensitive flux sweet spot. Taking advantage of a large superinductance (L∼1 μH), our circuit incorporates a resonant tunneling mechanism at zero external flux that couples states with the same fluxon parity, thus enabling bifluxon tunneling. The states |0⟩ and |1⟩ are encoded in wave-functions with parities 0 and 1, respectively, ensuring a minimal form of protection against relaxation. Two-tone spectroscopy reveals the energy level structure of the circuit and the presence of 4π quantum-phase slips between different potential wells corresponding to m=±1 fluxons, which can be precisely described by a simple fluxonium Hamiltonian or by an effective bifluxon Hamiltonian. Despite suboptimal fabrication, the measured relaxation (T1=177±3 μs) and dephasing (TE2=75±5 μs) times not only demonstrate the relevance of our approach but also opens an alternative direction towards quantum computing using partially-protected fluxonium qubits.
06
Feb
2024
Loss and decoherence in superconducting circuits on silicon: Insights from electron spin resonance
Solid-state devices used for quantum computation and quantum sensing applications are adversely affected by loss and noise caused by spurious, charged two-level systems (TLS) and stray
paramagnetic spins. These two sources of noise are interconnected, exacerbating the impact on circuit performance. We use an on-chip electron spin resonance (ESR) technique, with niobium nitride (NbN) superconducting resonators, to study surface spins on silicon and the effect of post-fabrication surface treatments. We identify two distinct spin species that are characterized by different spin-relaxation times and respond selectively to various surface treatments (annealing and hydrofluoric acid). Only one of the two spin species has a significant impact on the TLS-limited resonator quality factor at low-power (near single-photon) excitation. We observe a 3-to-5-fold reduction in the total density of spins after surface treatments, and demonstrate the efficacy of ESR spectroscopy in developing strategies to mitigate loss and decoherence in quantum systems.
Error budget of parametric resonance entangling gate with a tunable coupler
We analyze the experimental error budget of parametric resonance gates in a tunable coupler architecture. We identify and characterize various sources of errors, including incoherent,
leakage, amplitude, and phase errors. By varying the two-qubit gate time, we explore the dynamics of these errors and their impact on the gate fidelity. To accurately capture the impact of incoherent errors on gate fidelity, we measure the coherence times of qubits under gate operating conditions. Our findings reveal that the incoherent errors, mainly arising from qubit relaxation and dephasing due to white noise, limit the fidelity of the two-qubit gates. Moreover, we demonstrate that leakage to noncomputational states is the second largest contributor to the two-qubit gates infidelity, as characterized using leakage-randomized benchmarking. The error budgeting methodology we developed here can be effectively applied to other types of gate implementations.
Direct evidence for cosmic-ray-induced correlated errors in superconducting qubit array
Correlated errors can significantly impact the quantum error correction, which challenges the assumption that errors occur in different qubits independently in both space and time.
Superconducting qubits have been found to suffer correlated errors across multiple qubits, which could be attributable to ionizing radiations and cosmic rays. Nevertheless, the direct evidence and a quantitative understanding of this relationship are currently lacking. In this work, we propose to continuously monitor multi-qubit simultaneous charge-parity jumps to detect correlated errors and find that occur more frequently than multi-qubit simultaneous bit flips. Then, we propose to position two cosmic-ray muon detectors directly beneath the sample box in a dilution refrigerator and successfully observe the correlated errors in a superconducting qubit array triggered by muons. By introducing a lead shielding layer on the refrigerator, we also reveal that the majority of other correlated errors are primarily induced by gamma rays. Furthermore, we find the superconducting film with a higher recombination rate of quasiparticles used in the qubits is helpful in reducing the duration of correlated errors. Our results provide experimental evidence of the impact of gamma rays and muons on superconducting quantum computation and offer practical insights into mitigation strategies for quantum error correction. In addition, we observe the average occurrence rate of muon-induced correlated errors in our processor is approximately 0.40 min−1cm−2, which is comparable to the muon event rate detected by the muon detector with 0.506 min−1cm−2. This demonstrates the potential applications of superconducting qubit arrays as low-energy threshold sensors in the field of high-energy physics.
Reducing two-level system dissipations in 3D superconducting Niobium resonators by atomic layer deposition and high temperature heat treatment
Superconducting qubits have arisen as a leading technology platform for quantum computing which is on the verge of revolutionizing the world’s calculation capacities. Nonetheless,
the fabrication of computationally reliable qubit circuits requires increasing the quantum coherence lifetimes, which are predominantly limited by the dissipations of two-level system (TLS) defects present in the thin superconducting film and the adjacent dielectric regions. In this paper, we demonstrate the reduction of two-level system losses in three-dimensional superconducting radio frequency (SRF) niobium resonators by atomic layer deposition (ALD) of a 10 nm aluminum oxide Al2O3 thin films followed by a high vacuum (HV) heat treatment at 650 °C for few hours. By probing the effect of several heat treatments on Al2O3-coated niobium samples by X-ray photoelectron spectroscopy (XPS) plus scanning and conventional high resolution transmission electron microscopy (STEM/HRTEM) coupled with electron energy loss spectroscopy (EELS) and (EDX) , we witness a dissolution of niobium native oxides and the modification of the Al2O3-Nb interface, which correlates with the enhancement of the quality factor at low fields of two 1.3 GHz niobium cavities coated with 10 nm of Al2O3.
Characterization of a Transmon Qubit in a 3D Cavity for Quantum Machine Learning and Photon Counting
In this paper we report the use of superconducting transmon qubit in a 3D cavity for quantum machine learning and photon counting applications. We first describe the realization and
characterization of a transmon qubit coupled to a 3D resonator, providing a detailed description of the simulation framework and of the experimental measurement of important parameters, like the dispersive shift and the qubit anharmonicity. We then report on a Quantum Machine Learning application implemented on the single-qubit device to fit the u-quark parton distribution function of the proton. In the final section of the manuscript we present a new microwave photon detection scheme based on two qubits coupled to the same 3D resonator. This could in principle decrease the dark count rate, favouring applications like axion dark matter searches.
05
Feb
2024
Superconducting Qubits Above 20 GHz Operating over 200 mK
Current state-of-the-art superconducting microwave qubits are cooled to extremely low temperatures to avoid sources of decoherence. Higher qubit operating temperatures would significantly
increase the cooling power available, which is desirable for scaling up the number of qubits in quantum computing architectures and integrating qubits in experiments requiring increased heat dissipation. To operate superconducting qubits at higher temperatures, it is necessary to address both quasiparticle decoherence (which becomes significant for aluminum junctions above 160 mK) and dephasing from thermal microwave photons (which are problematic above 50 mK). Using low-loss niobium trilayer junctions, which have reduced sensitivity to quasiparticles due to niobium’s higher superconducting transition temperature, we fabricate transmons with higher frequencies than previously studied, up to 24 GHz. We measure decoherence and dephasing times of about 1 us, corresponding to average qubit quality factors of approximately 105, and find that decoherence is unaffected by quasiparticles up to 1 K. Without relaxation from quasiparticles, we are able to explore dephasing from purely thermal sources, finding that our qubits can operate up to approximately 250 mK while maintaining similar performance. The thermal resilience of these qubits creates new options for scaling up quantum processors, enables hybrid quantum experiments with high heat dissipation budgets, and introduces a material platform for even higher-frequency qubits.
Synchronous Detection of Cosmic Rays and Correlated Errors in Superconducting Qubit Arrays
Quantum information processing at scale will require sufficiently stable and long-lived qubits, likely enabled by error-correction codes. Several recent superconducting-qubit experiments,
however, reported observing intermittent spatiotemporally correlated errors that would be problematic for conventional codes, with ionizing radiation being a likely cause. Here, we directly measured the cosmic-ray contribution to spatiotemporally correlated qubit errors. We accomplished this by synchronously monitoring cosmic-ray detectors and qubit energy-relaxation dynamics of 10 transmon qubits distributed across a 5x5x0.35 mm3 silicon chip. Cosmic rays caused correlated errors at a rate of 1/(10 min), accounting for 17±1% of all such events. Our qubits responded to essentially all of the cosmic rays and their secondary particles incident on the chip, consistent with the independently measured arrival flux. Moreover, we observed that the landscape of the superconducting gap in proximity to the Josephson junctions dramatically impacts the qubit response to cosmic rays. Given the practical difficulties associated with shielding cosmic rays, our results indicate the importance of radiation hardening — for example, superconducting gap engineering — to the realization of robust quantum error correction.
Two-dimensional topological effect in a transmon qubit array with tunable couplings
We investigate a square-lattice architecture of superconducting transmon qubits with inter-qubit interactions mediated by inductive couplers. Therein, the inductive couling between
the qubit and couplers is suggested to be designed into the gradiometer form to intigimate the flux noise orginating from the environment. Via periodically modulating the couplers,the Abelian gauge potential, termed effective magnetic flux, can be synthesized artificially, making the system an excellent platform for simulating two-dimensional topological physics. In the simplest two-dimensional model, the double (or three-leg) ladder, the staggered vortex-Meissner phase transition different from that in the two-leg ladder can be found in the single-particle ground state as the effective magnetic flux varies. Besides, the large coupling ratio between the interleg and intraleg coupling strengths also makes the chiral current resemble squeezed sinusoidal functions. If the row number is further increased, the topological band structure anticipated at massive rows begins to occur even for a relatively small number of rows (ten or so for the considered parameters). This heralds a small circuit scale to observe the topological band. The edge state in the band gap is determined by the topological Chern number and can be calculated through integrating the Berry curvature with respect to the first Brillouin zone. Besides, we present a systematic method on how to measure the topological band structure based on time- and space-domain Frourier transformation of the wave function after properly excited. The result offers an avenue for simulating two-dimensional topological physics on the state-of-the-art superconducting quantum chips.