Finite-time quantum correlations of propagating squeezed microwaves

  1. Kirill G. Fedorov,
  2. S. Pogorzalek,
  3. U. Las Heras,
  4. M. Sanz,
  5. P. Yard,
  6. P. Eder,
  7. M. Fischer,
  8. J. Goetz,
  9. E. Xie,
  10. K. Inomata,
  11. Y. Nakamura,
  12. R. Di Candia,
  13. E. Solano,
  14. A. Marx,
  15. F. Deppe,
  16. and R. Gross
Two-mode squeezing is a fascinating example of quantum entanglement manifested in cross-correlations of incompatible observables between two subsystems. At the same time, these subsystems
themselves may contain no quantum signatures in their self-correlations. These properties make two-mode squeezed (TMS) states an ideal resource for applications in quantum communication, quantum computation, and quantum illumination. Propagating microwave TMS states can be produced by a beam splitter distributing single mode squeezing emitted from Josephson parametric amplifiers (JPA) into two output paths. In this work, we experimentally quantify the dephasing process of quantum correlations in propagating TMS microwave states and accurately describe it with a theory model. In this way, we gain an insight into quantum entanglement limits and predict high fidelities for benchmark quantum communication protocols such as remote state preparation and quantum teleportation.

Quantum Illumination Unveils Cloaking

  1. U. Las Heras,
  2. R. Di Candia,
  3. K. G. Fedorov,
  4. F. Deppe,
  5. M. Sanz,
  6. and E. Solano
In quantum illumination entangled light is employed to enhance the detection accuracy of an object when compared with the best classical protocol. On the other hand, cloaking is a stealth
technology based on covering a target with a material deflecting the light around the object to avoid its detection. Here, we propose a quantum illumination protocol especially adapted to quantum microwave technology which, by seizing weaknesses in current cloaking techniques, allows for a 3 dB improvement in the detection of a cloaked target. Finally, we study the minimal efficiency required by the photocounter for which the quantum illumination protocol still shows a gain with respect to the classical protocol.

Displacement of propagating squeezed microwave states

  1. Kirill G. Fedorov,
  2. L. Zhong,
  3. S. Pogorzalek,
  4. P. Eder,
  5. M. Fischer,
  6. J. Goetz,
  7. E. Xie,
  8. F. Wulschner,
  9. K. Inomata,
  10. T. Yamamoto,
  11. Y. Nakamura,
  12. R. Di Candia,
  13. U. Las Heras,
  14. M. Sanz,
  15. E. Solano,
  16. E. P. Menzel,
  17. F. Deppe,
  18. A. Marx,
  19. and R. Gross
Displacement of propagating quantum states of light is a fundamental operation for quantum communication. It enables fundamental studies on macroscopic quantum coherence and plays an
important role in quantum teleportation protocols with continuous variables. In our experiments we have successfully implemented this operation for propagating squeezed microwave states. We demonstrate that, even for strong displacement amplitudes, there is no degradation of the squeezing level in the reconstructed quantum states. Furthermore, we confirm that path entanglement generated by using displaced squeezed states stays constant over a wide range of the displacement power.

Quantum chemistry and charge transport in biomolecules with superconducting circuits

  1. L. García-Álvarez,
  2. U. Las Heras,
  3. A. Mezzacapo,
  4. M. Sanz,
  5. E. Solano,
  6. and L. Lamata
We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with
superconducting circuits. Along these lines, we prove that fermionic models of molecular structure can be optimally digitalized with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects.

Digitized adiabatic quantum computing with a superconducting circuit

  1. R. Barends,
  2. A. Shabani,
  3. L. Lamata,
  4. J. Kelly,
  5. A. Mezzacapo,
  6. U. Las Heras,
  7. R. Babbush,
  8. A. G. Fowler,
  9. B. Campbell,
  10. Yu Chen,
  11. Z. Chen,
  12. B. Chiaro,
  13. A. Dunsworth,
  14. E. Jeffrey,
  15. E. Lucero,
  16. A. Megrant,
  17. J. Y. Mutus,
  18. M. Neeley,
  19. C. Neill,
  20. P. J. J. O'Malley,
  21. C. Quintana,
  22. P. Roushan,
  23. D. Sank,
  24. A. Vainsencher,
  25. J. Wenner,
  26. T. C. White,
  27. E. Solano,
  28. H. Neven,
  29. and John M. Martinis
A major challenge in quantum computing is to solve general problems with limited physical hardware. Here, we implement digitized adiabatic quantum computing, combining the generality
of the adiabatic algorithm with the universality of the digital approach, using a superconducting circuit with nine qubits. We probe the adiabatic evolutions, and quantify the success of the algorithm for random spin problems. We find that the system can approximate the solutions to both frustrated Ising problems and problems with more complex interactions, with a performance that is comparable. The presented approach is compatible with small-scale systems as well as future error-corrected quantum computers.

Quantum Simulation of Spin Chains Coupled to Bosonic Modes with Superconducting Circuits

  1. U. Las Heras,
  2. L. García-Álvarez,
  3. A. Mezzacapo,
  4. E. Solano,
  5. and L. Lamata
We propose the implementation of a digital quantum simulation of spin chains coupled to bosonic field modes in superconducting circuits. Gates with high fidelities allows one to simulate
a variety of Ising magnetic pairing interactions with transverse field, Tavis-Cummings interaction between spins and a bosonic mode, and a spin model with three-body terms. We analyze the feasibility of the implementation in realistic circuit quantum electrodynamics setups, where the interactions are either realized via capacitive couplings or mediated by microwave resonators.

Digital quantum simulation of spin models with circuit quantum electrodynamics

  1. Y. Salathé,
  2. M. Mondal,
  3. M. Oppliger,
  4. J. Heinsoo,
  5. P. Kurpiers,
  6. A. Potočnik,
  7. A. Mezzacapo,
  8. U. Las Heras,
  9. L. Lamata,
  10. E. Solano,
  11. S. Filipp,
  12. and A. Wallraff
Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional
computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources which are polynomial in the number of spins and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.

Fermionic Models with Superconducting Circuits

  1. U. Las Heras,
  2. L. García-Álvarez,
  3. A. Mezzacapo,
  4. E. Solano,
  5. and L. Lamata
We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition,
and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups.

Digital Quantum Rabi and Dicke Models in Superconducting Circuits

  1. A. Mezzacapo,
  2. U. Las Heras,
  3. J. S. Pedernales,
  4. L. DiCarlo,
  5. E. Solano,
  6. and L. Lamata
We propose the analog-digital quantum simulation of the quantum Rabi and Dicke models using circuit quantum electrodynamics (QED). We find that all physical regimes, in particular those
which are impossible to realize in typical cavity QED setups, can be simulated via unitary decomposition into digital steps. Furthermore, we show the emergence of the Dirac equation dynamics from the quantum Rabi model when the mode frequency vanishes. Finally, we analyze the feasibility of this proposal under realistic superconducting circuit scenarios.

Digital Quantum Simulation of Spin Systems in Superconducting Circuits

  1. U. Las Heras,
  2. A. Mezzacapo,
  3. L. Lamata,
  4. S. Filipp,
  5. A. Wallraff,
  6. and E. Solano
We propose the implementation of a digital quantum simulator for prototypical spin models in a circuit quantum electrodynamics architecture. We consider the feasibility of the quantum
simulation of Heisenberg and frustrated Ising models in transmon qubits coupled to coplanar waveguide microwave resonators. Furthermore, we analyze the time evolution of these models and compare the ideal spin dynamics with a realistic version of the proposed quantum simulator. Finally, we discuss the key steps for developing the toolbox of digital quantum simulators in superconducting circuits.