High-frequency suppression of inductive coupling between flux qubit and transmission line resonator

  1. Sahel Ashhab,
  2. Ziqiao Ao,
  3. Fumiki Yoshihara,
  4. and Kouichi Semba
We perform theoretical calculations to investigate the naturally occurring high-frequency cutoff in a circuit comprising a flux qubit coupled inductively to a transmission line resonator
(TLR). Our results agree with those of past studies that considered somewhat similar circuit designs. In particular, a decoupling occurs between the qubit and the high-frequency modes. As a result, the coupling strength between the qubit and resonator modes increases with mode frequency ω as ω‾‾√ at low frequencies and decreases as 1/ω‾‾√ at high frequencies. We derive expressions for the multimode-resonator-induced Lamb shift in the qubit’s characteristic frequency. Because of the natural decoupling between the qubit and high-frequency modes, the Lamb-shift-renormalized qubit frequency remains finite.

Extremely Large Lamb Shift in a Deep-strongly Coupled Circuit QED System with a Multimode Resonator

  1. Ziqiao Ao,
  2. Sahel Ashhab,
  3. Fumiki Yoshihara,
  4. Tomoko Fuse,
  5. Kosuke Kakuyanagi,
  6. Shiro Saito,
  7. Takao Aoki,
  8. and Kouichi Semba
We report experimental and theoretical results on the extremely large Lamb shift in a multimode circuit quantum electrodynamics (QED) system in the deep-strong coupling (DSC) regime,
where the qubit-resonator coupling strength is comparable to or larger than the qubit and resonator frequencies. The system comprises a superconducting flux qubit (FQ) and a quarter-wavelength coplanar waveguide resonator (λ/4 CPWR) that are coupled inductively through a shared edge that contains a Josephson junction to achieve the DSC regime. Spectroscopy is performed around the frequency of the fundamental mode of the CPWR, and the spectrum is fitted by the single-mode quantum Rabi Hamiltonian to obtain the system parameters. Since the qubit is also coupled to a large number of higher modes in the resonator, the single-mode fitting does not provide the bare qubit energy but a value that incorporates the renormalization from all the other modes. We derive theoretical formulas for the Lamb shift in the multimode resonator system. As shown in previous studies, there is a cut-off frequency ωcutoff for the coupling between the FQ and the modes in the CPWR, where the coupling grows as ωn‾‾‾√ for ωn/ωcutoff≪1 and decreases as 1/ωn‾‾‾√ for ωn/ωcutoff≫1. Here ωn is the frequency of the nth mode. Using our observed spectrum and theoretical formulas, we estimate that the Lamb shift from the fundamental mode is 82.3\% and the total Lamb shift from all the modes is 96.5\%. This result illustrates that the coupling to the large number of modes in a CPWR yields an extremely large Lamb shift but does not suppress the qubit energy to zero, which would happen in the absence of a high-frequency cut-off.

Inversion of qubit energy levels in qubit-oscillator circuits in the deep-strong-coupling regime

  1. Fumiki Yoshihara,
  2. Tomoko Fuse,
  3. Ziqiao Ao,
  4. Sahel Ashhab,
  5. Kosuke Kakuyanagi,
  6. Shiro Saito,
  7. Takao Aoki,
  8. Kazuki Koshino,
  9. and Kouichi Semba
We report on experimentally measured light shifts of superconducting flux qubits deep-strongly-coupled to an LC oscillator, where the coupling constant is comparable to the qubit’s
transition frequency and the oscillator’s resonance frequency. By using two-tone spectroscopy, the energies of the six-lowest levels of the coupled circuits are determined. We find a huge Lamb shift that exceeds 90% of the bare qubit frequencies and inversion of the qubits‘ ground and excited states when there is a finite number of photons in the oscillator. Our experimental results agree with theoretical predictions based on the quantum Rabi model.