High-frequency suppression of inductive coupling between flux qubit and transmission line resonator

  1. Sahel Ashhab,
  2. Ziqiao Ao,
  3. Fumiki Yoshihara,
  4. and Kouichi Semba
We perform theoretical calculations to investigate the naturally occurring high-frequency cutoff in a circuit comprising a flux qubit coupled inductively to a transmission line resonator (TLR). Our results agree with those of past studies that considered somewhat similar circuit designs. In particular, a decoupling occurs between the qubit and the high-frequency modes. As a result, the coupling strength between the qubit and resonator modes increases with mode frequency ω as ω‾‾√ at low frequencies and decreases as 1/ω‾‾√ at high frequencies. We derive expressions for the multimode-resonator-induced Lamb shift in the qubit’s characteristic frequency. Because of the natural decoupling between the qubit and high-frequency modes, the Lamb-shift-renormalized qubit frequency remains finite.

leave comment