Inversion of qubit energy levels in qubit-oscillator circuits in the deep-strong-coupling regime

  1. Fumiki Yoshihara,
  2. Tomoko Fuse,
  3. Ziqiao Ao,
  4. Sahel Ashhab,
  5. Kosuke Kakuyanagi,
  6. Shiro Saito,
  7. Takao Aoki,
  8. Kazuki Koshino,
  9. and Kouichi Semba
We report on experimentally measured light shifts of superconducting flux qubits deep-strongly-coupled to an LC oscillator, where the coupling constant is comparable to the qubit’s transition frequency and the oscillator’s resonance frequency. By using two-tone spectroscopy, the energies of the six-lowest levels of the coupled circuits are determined. We find a huge Lamb shift that exceeds 90% of the bare qubit frequencies and inversion of the qubits‘ ground and excited states when there is a finite number of photons in the oscillator. Our experimental results agree with theoretical predictions based on the quantum Rabi model.

leave comment