Quantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated. During computation,unused high energy levels of the qubits can become excited, creating leakage states that are long-lived and mobile. Particularly for superconducting transmon qubits, this leakage opens a path to errors that are correlated in space and time. Here, we report a reset protocol that returns a qubit to the ground state from all relevant higher level states. We test its performance with the bit-flip stabilizer code, a simplified version of the surface code for quantum error correction. We investigate the accumulation and dynamics of leakage during error correction. Using this protocol, we find lower rates of logical errors and an improved scaling and stability of error suppression with increasing qubit number. This demonstration provides a key step on the path towards scalable quantum computing.
We demonstrate diabatic two-qubit gates with Pauli error rates down to 4.3(2)⋅10−3 in as fast as 18 ns using frequency-tunable superconducting qubits. This is achieved by synchronizingthe entangling parameters with minima in the leakage channel. The synchronization shows a landscape in gate parameter space that agrees with model predictions and facilitates robust tune-up. We test both iSWAP-like and CPHASE gates with cross-entropy benchmarking. The presented approach can be extended to multibody operations as well.
Superconducting qubits are an attractive platform for quantum computing since they have demonstrated high-fidelity quantum gates and extensibility to modest system sizes. Nonetheless,an outstanding challenge is stabilizing their energy-relaxation times, which can fluctuate unpredictably in frequency and time. Here, we use qubits as spectral and temporal probes of individual two-level-system defects to provide direct evidence that they are responsible for the largest fluctuations. This research lays the foundation for stabilizing qubit performance through calibration, design, and fabrication.
Statistical mechanics is founded on the assumption that a system can reach thermal equilibrium, regardless of the starting state. Interactions between particles facilitate thermalization,but, can interacting systems always equilibrate regardless of parameter values\,? The energy spectrum of a system can answer this question and reveal the nature of the underlying phases. However, most experimental techniques only indirectly probe the many-body energy spectrum. Using a chain of nine superconducting qubits, we implement a novel technique for directly resolving the energy levels of interacting photons. We benchmark this method by capturing the intricate energy spectrum predicted for 2D electrons in a magnetic field, the Hofstadter butterfly. By increasing disorder, the spatial extent of energy eigenstates at the edge of the energy band shrink, suggesting the formation of a mobility edge. At strong disorder, the energy levels cease to repel one another and their statistics approaches a Poisson distribution – the hallmark of transition from the thermalized to the many-body localized phase. Our work introduces a new many-body spectroscopy technique to study quantum phases of matter.
Fundamental questions in chemistry and physics may never be answered due to the exponential complexity of the underlying quantum phenomena. A desire to overcome this challenge has sparkeda new industry of quantum technologies with the promise that engineered quantum systems can address these hard problems. A key step towards demonstrating such a system will be performing a computation beyond the capabilities of any classical computer, achieving so-called quantum supremacy. Here, using 9 superconducting qubits, we demonstrate an immediate path towards quantum supremacy. By individually tuning the qubit parameters, we are able to generate thousands of unique Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert-space. As the number of qubits in the algorithm is varied, the system continues to explore the exponentially growing number of states. Combining these large datasets with techniques from machine learning allows us to construct a model which accurately predicts the measured probabilities. We demonstrate an application of these algorithms by systematically increasing the disorder and observing a transition from delocalized states to localized states. By extending these results to a system of 50 qubits, we hope to address scientific questions that are beyond the capabilities of any classical computer.
By analyzing the dissipative dynamics of a tunable gap flux qubit, we extract both sides of its two-sided environmental flux noise spectral density over a range of frequencies around2kBT/h≈1GHz, allowing for the observation of a classical-quantum crossover. Below the crossover point, the symmetric noise component follows a 1/f power law that matches the magnitude of the 1/f noise near 1Hz. The antisymmetric component displays a 1/T dependence below 100mK, providing dynamical evidence for a paramagnetic environment. Extrapolating the two-sided spectrum predicts the linewidth and reorganization energy of incoherent resonant tunneling between flux qubit wells.
Surface distributions of two level system (TLS) defects and magnetic vortices are limiting dissipation sources in superconducting quantum circuits. Arrays of flux-trapping holes arecommonly used to eliminate loss due to magnetic vortices, but may increase dielectric TLS loss. We find that dielectric TLS loss increases by approximately 25% for resonators with a hole array beginning 2 μm from the resonator edge, while the dielectric loss added by holes further away was below measurement sensitivity. Other forms of loss were not affected by the holes. Additionally, we bound the loss tangent due to residual magnetic effects to <9×10−11/mG for resonators patterned with flux-traps and operated in magnetic fields up to 50mG.[/expand]
The intriguing many-body phases of quantum matter arise from the interplay of particle interactions, spatial symmetries, and external fields. Generating these phases in an engineeredsystem could provide deeper insight into their nature and the potential for harnessing their unique properties. However, concurrently bringing together the main ingredients for realizing many-body phenomena in a single experimental platform is a major challenge. Using superconducting qubits, we simultaneously realize synthetic magnetic fields and strong particle interactions, which are among the essential elements for studying quantum magnetism and fractional quantum Hall (FQH) phenomena. The artificial magnetic fields are synthesized by sinusoidally modulating the qubit couplings. In a closed loop formed by the three qubits, we observe the directional circulation of photons, a signature of broken time-reversal symmetry. We demonstrate strong interactions via the creation of photon-vacancies, or „holes“, which circulate in the opposite direction. The combination of these key elements results in chiral groundstate currents, the first direct measurement of persistent currents in low-lying eigenstates of strongly interacting bosons. The observation of chiral currents at such a small scale is interesting and suggests that the rich many-body physics could survive to smaller scales. We also motivate the feasibility of creating FQH states with near future superconducting technologies. Our work introduces an experimental platform for engineering quantum phases of strongly interacting photons and highlight a path toward realization of bosonic FQH states.
We present a method to optimize qubit control parameters during error detection which is compatible with large-scale qubit arrays. We demonstrate our method to optimize single or two-qubitgates in parallel on a nine-qubit system. Additionally, we show how parameter drift can be compensated for during computation by inserting a frequency drift and using our method to remove it. We remove both drift on a single qubit and independent drifts on all qubits simultaneously. We believe this method will be useful in keeping error rates low on all physical qubits throughout the course of a computation. Our method is O(1) scalable to systems of arbitrary size, providing a path towards controlling the large numbers of qubits needed for a fault-tolerant quantum computer
We report the first electronic structure calculation performed on a quantum computer without exponentially costly precompilation. We use a programmable array of superconducting qubitsto compute the energy surface of molecular hydrogen using two distinct quantum algorithms. First, we experimentally execute the unitary coupled cluster method using the variational quantum eigensolver. Our efficient implementation predicts the correct dissociation energy to within chemical accuracy of the numerically exact result. Next, we experimentally demonstrate the canonical quantum algorithm for chemistry, which consists of Trotterization and quantum phase estimation. We compare the experimental performance of these approaches to show clear evidence that the variational quantum eigensolver is robust to certain errors, inspiring hope that quantum simulation of classically intractable molecules may be viable in the near future.