Fluctuations of Energy-Relaxation Times in Superconducting Qubits

  1. P. V. Klimov,
  2. J. Kelly,
  3. Z. Chen,
  4. M. Neeley,
  5. A. Megrant,
  6. B. Burkett,
  7. R. Barends,
  8. K. Arya,
  9. B. Chiaro,
  10. Yu Chen,
  11. A. Dunsworth,
  12. A. Fowler,
  13. B. Foxen,
  14. C. Gidney,
  15. M. Giustina,
  16. R. Graff,
  17. T. Huang,
  18. E. Jeffrey,
  19. Erik Lucero,
  20. J. Y. Mutus,
  21. O. Naaman,
  22. C. Neill,
  23. C. Quintana,
  24. P. Roushan,
  25. Daniel Sank,
  26. A. Vainsencher,
  27. J. Wenner,
  28. T. C. White,
  29. S. Boixo,
  30. R. Babbush,
  31. V. N. Smelyanskiy,
  32. H. Neven,
  33. and John M. Martinis
Superconducting qubits are an attractive platform for quantum computing since they have demonstrated high-fidelity quantum gates and extensibility to modest system sizes. Nonetheless, an outstanding challenge is stabilizing their energy-relaxation times, which can fluctuate unpredictably in frequency and time. Here, we use qubits as spectral and temporal probes of individual two-level-system defects to provide direct evidence that they are responsible for the largest fluctuations. This research lays the foundation for stabilizing qubit performance through calibration, design, and fabrication.

leave comment