Operator spreading, often characterized by out-of-time-order correlators (OTOCs), is one of the central concepts in quantum many-body physics. However, measuring OTOCs is experimentallychallenging due to the requirement of reversing the time evolution of the system. Here we apply Floquet engineering to investigate operator spreading in a superconducting 10-qubit chain. Floquet engineering provides an effective way to tune the coupling strength between nearby qubits, which is used to demonstrate quantum walks with tunable coupling, dynamic localization, reversed time evolution, and the measurement of OTOCs. A clear light-cone-like operator propagation is observed in the system with multiphoton excitations, and the corresponding spreading velocity is equal to that of quantum walk. Our results indicate that the method has a high potential for simulating a variety of quantum many-body systems and their dynamics, which is also scalable to more qubits and higher dimensional circuits.
Multipartite entangled states are significant resources for both quantum information processing and quantum metrology. In particular, non-Gaussian entangled states are predicted toachieve a higher sensitivity of precision measurements than Gaussian states. On the basis of metrological sensitivity, the conventional linear Ramsey squeezing parameter (RSP) efficiently characterises the Gaussian entangled atomic states but fails for much wider classes of highly sensitive non-Gaussian states. These complex non-Gaussian entangled states can be classified by the nonlinear squeezing parameter (NLSP), as a generalisation of the RSP with respect to nonlinear observables, and identified via the Fisher information. However, the NLSP has never been measured experimentally. Using a 19-qubit programmable superconducting processor, here we report the characterisation of multiparticle entangled states generated during its nonlinear dynamics. First, selecting 10 qubits, we measure the RSP and the NLSP by single-shot readouts of collective spin operators in several different directions. Then, by extracting the Fisher information of the time-evolved state of all 19 qubits, we observe a large metrological gain of 9.89[Math Processing Error] dB over the standard quantum limit, indicating a high level of multiparticle entanglement for quantum-enhanced phase sensitivity. Benefiting from high-fidelity full controls and addressable single-shot readouts, the superconducting processor with interconnected qubits provides an ideal platform for engineering and benchmarking non-Gaussian entangled states that are useful for quantum-enhanced metrology.
Understanding various phenomena in non-equilibrium dynamics of closed quantum many-body systems, such as quantum thermalization, information scrambling, and nonergodic dynamics, isa crucial for modern physics. Using a ladder-type superconducting quantum processor, we perform analog quantum simulations of both the XX ladder and one-dimensional (1D) XX model. By measuring the dynamics of local observables, entanglement entropy and tripartite mutual information, we signal quantum thermalization and information scrambling in the XX ladder. In contrast, we show that the XX chain, as free fermions on a 1D lattice, fails to thermalize, and local information does not scramble in the integrable channel. Our experiments reveal ergodicity and scrambling in the controllable qubit ladder, and opens the door to further investigations on the thermodynamics and chaos in quantum many-body systems.
In a crystal lattice system, a conduction electron can exhibit Bloch oscillations and Wannier-Stark localization (WSL) under a constant force, which has been observed in semiconductorsuperlattice, photonic waveguide array and cold atom systems. Here, we experimentally investigate the Bloch oscillations on a 5-qubit superconducting processor. We simulate the electron movement with spin (or photon) propagation. We find, in the presence of a linear potential, the propagation of a single spin charge is constrained. It tends to oscillate near the neighborhood of initial positions, which is a strong signature of Bloch oscillations and WSL. In addition, we use the maximum probability that a spin charge can propagate from one boundary to another boundary to represent the WSL length, and it is verified that the localization length is inversely correlated to the potential gradient. Remarkably, benefiting from the precise simultaneous readout of the all qubits, we can also study the thermal transport of this system. The experimental results show that, similar to the spin charges, the thermal transport is also blocked under a linear potential. Our work demonstrates possibilities for further simulation and exploration of the Bloch oscillation phenomena and other quantum physics using multiqubit superconducting quantum processor.
Non-equilibrium quantum many-body systems, which are difficult to study via classical computation, have attracted wide interest. Quantum simulation can provide insights into these problems.Here, using a programmable quantum simulator with 16 all-to-all connected superconducting qubits, we investigate the dynamical phase transition in the Lipkin-Meshkov-Glick model with a quenched transverse field. Clear signatures of the dynamical phase transition, merging different concepts of dynamical criticality, are observed by measuring the non-equilibrium order parameter, nonlocal correlations, and the Loschmidt echo. Moreover, near the dynamical critical point, we obtain the optimal spin squeezing of −7.0±0.8 decibels, showing multipartite entanglement useful for measurements with precision five-fold beyond the standard quantum limit. Based on the capability of entangling qubits simultaneously and the accurate single-shot readout of multi-qubit states, this superconducting quantum simulator can be used to study other problems in non-equilibrium quantum many-body systems.