Observation of dynamical quantum phase transition by a superconducting qubit simulation

  1. Xue-Yi Guo,
  2. Chao Yang,
  3. Yu Zeng,
  4. Yi Peng,
  5. He-Kang Li,
  6. Hui Deng,
  7. Yi-Rong Jin,
  8. Shu Chen,
  9. Dongning Zheng,
  10. and Heng Fan
A dynamical quantum phase transition can occur in time evolution of sudden quenched quantum systems across phase transition. It corresponds to nonanalytic behavior at a critical time
for rate function of quantum state return amplitude, analogous to nonanalyticity of the free energy density at the critical temperature in macroscopic systems. A variety of many-body systems can be represented in momentum space as a spin-1/2 state evolving in Bloch sphere, where each momentum mode is decoupled and thus can be simulated independently by a single qubit. Here, we report the observation of dynamical quantum phase transition by a superconducting qubit simulation of the quantum quench dynamics of many-body systems. We take the Ising model with transverse field as an example. In experiment, the spin state initially polarized longitudinally evolves based on Hamiltonian with adjustable parameters depending on momentum and strength of the transverse magnetic field. The time evolved quantum state will be readout by state tomography. Evidences of dynamical quantum phase transition such as paths of time evolution state on Bloch sphere, the non-analytic behavior in dynamical free energy and the emergence of Skyrmion lattice in momentum-time space are provided. The experiment data agrees well with theoretical and numerical calculations. The experiment demonstrates for the first time explicitly the topological invariant, both topological trivial and non-trivial, for dynamical quantum phase transition. Our experiment results show that the quantum phase transition of many-body systems can be successfully simulated by a single qubit by varying control parameter over the range of momentum.

Demonstration of irreversibility and dissipation relation of thermodynamics with a superconducting qubit

  1. Xue-Yi Guo,
  2. Yi Peng,
  3. Changnan Peng,
  4. Hui Deng,
  5. Yi-Rong Jin,
  6. Chengchun Tang,
  7. Xiaobo Zhu,
  8. Dongning Zheng,
  9. and Heng Fan
We investigate experimentally the relation between thermodynamical irreversibility and dissipation on a superconducting Xmon qubit. This relation also implies the second law and the
Landauer principle on dissipation in the irreversible computations. In our experiment, the qubit is initialized to states according to Gibbs distribution. Work injection and extraction processes are conducted through two kinds of unitary driving protocols, for both a forward process and its corresponding mirror reverses. Relative entropy and relative Re’nyi entropy are employed to measure the asymmetry between paired forward and backward work injection or extraction processes. We show experimentally that relative entropy and relative Re’nyi entropy measured irreversibility are related to the average of work dissipation and average of exponentiated work dissipation respectively. Our work provides solid experimental support for the theory of quantum thermodynamics.