Multimode physics of the unimon circuit

  1. Sasu Tuohino,
  2. Vasilii Vadimov,
  3. Wallace S. Teixeira,
  4. Tommi Malmelin,
  5. Matti Silveri,
  6. and Mikko Möttönen
We consider a superconducting half-wavelength resonator that is grounded at its both ends and contains a single Josephson junction. Previously this circuit was considered as a unimon
qubit in the single-mode approximation where dc-phase-biasing the junction to π leads to increased anharmonicity and 99.9% experimentally observed single-qubit gate fidelity. Inspired by the promising first experimental results, we develop here a theoretical and numerical model for the detailed understanding of the multimode physics of the unimon circuit. To this end, first, we consider the high-frequency modes of the unimon circuit and find that even though these modes are at their ground state, they imply a significant renormalization to the Josephson energy. We introduce an efficient method how the relevant modes can be fully taken into account and show that unexcited high-lying modes lead to corrections in the qubit energy and anharmonicity. Interestingly, provided that the junction is offset from the middle of the circuit, we find strong cross-Kerr coupling strengths between a few low-lying modes. This observation paves the way for the utilization of the multimode structure, for example, as several qubits embedded into a single unimon circuit.

Quantum-circuit refrigeration of a superconducting microwave resonator well below a single quantum

  1. Arto Viitanen,
  2. Timm Mörstedt,
  3. Wallace S. Teixeira,
  4. Maaria Tiiri,
  5. Jukka Räbinä,
  6. Matti Silveri,
  7. and Mikko Möttönen
We experimentally demonstrate a recently proposed single-junction quantum-circuit refrigerator (QCR) as an in-situ-tunable low-temperature environment for a superconducting 4.7-GHz
resonator. With the help of a transmon qubit, we measure the populations of the different resonator Fock states, thus providing reliable access to the temperature of the engineered electromagnetic environment and its effect on the resonator. We demonstrate coherent and thermal resonator states and that the on-demand dissipation provided by the QCR can drive these to a small fraction of a photon on average, even if starting above 1 K. We observe that the QCR can be operated either with a dc bias voltage or a gigahertz rf drive, or a combination of these. The bandwidth of the rf drive is not limited by the circuit itself and consequently, we show that 2.9-GHz continuous and 10-ns-pulsed drives lead to identical desired refrigeration of the resonator. These observations answer to the shortcomings of previous works where the Fock states were not resolvable and the QCR exhibited slow charging dynamics. Thus this work introduces a versatile tool to study open quantum systems, quantum thermodynamics, and to quickly reset superconducting qubits.

Exceptional-point-assisted entanglement, squeezing, and reset in a chain of three superconducting resonators

  1. Wallace S. Teixeira,
  2. Vasilii Vadimov,
  3. Timm Mörstedt,
  4. Suman Kundu,
  5. and Mikko Möttönen
The interplay between coherent and dissipative dynamics required in various control protocols of quantum technology has motivated studies of open-system degeneracies, referred to as
exceptional points (EPs). Here, we introduce a scheme for fast quantum-state synthesis using exceptional-point engineering in a lossy chain of three superconducting resonators. We theoretically find that the rich physics of EPs can be used to identify regions in the parameter space that favor a fast and quasi-stable transfer of squeezing and entanglement, or a fast reset of the system. For weakly interacting resonators with the coupling strength g, the obtained quasi-stabilization time scales are identified as 1/(22‾√g), and reset infidelities below 10−5 are obtained with a waiting time of roughly 6/g in the case of weakly squeezed resonators. Our results shed light on the role of EPs in multimode Gaussian systems and pave the way for optimized distribution of squeezing and entanglement between different nodes of a photonic network using dissipation as a resource.