microwave photons in a 1D open
transmission line can be made strong enough to observe quantum coherent
effects, without using any cavity to confine the microwave photons. We
investigate the scattering properties in such a system with resonant coherent
microwaves. We observe the strong nonlinearity of the artificial atom and under
strong driving we observe the Mollow triplet. By applying two resonant tones,
we also observe the Autler-Townes splitting. By exploiting these effects, we
demonstrate two quantum devices at the single-photon level in the microwave
regime: the single-photon router and the photon-number filter. These devices
provide essential steps towards the realization of an on-chip quantum network.
Microwave Quantum Optics with an Artificial Atom
We address the recent advances on microwave quantum optics with artificial
atoms. This field relies on the fact that the coupling between a
superconducting artificial atom and propagating