Generation of Frequency-Tunable Shaped Single Microwave Photons Using a Fixed-Frequency Superconducting Qubit

  1. Takeaki Miyamura,
  2. Yoshiki Sunada,
  3. Zhiling Wang,
  4. Jesper Ilves,
  5. Kohei Matsuura,
  6. and Yasunobu Nakamura
Scaling up a superconducting quantum computer will likely require quantum communication between remote chips, which can be implemented using an itinerant microwave photon in a transmission
line. To realize high-fidelity communication, it is essential to control the frequency and temporal shape of the microwave photon. In this work, we demonstrate the generation of frequency-tunable shaped microwave photons without resorting to any frequency-tunable circuit element. We develop a framework which treats a microwave resonator as a band-pass filter mediating the interaction between a superconducting qubit and the modes in the transmission line. This interpretation allows us to stimulate the photon emission by an off-resonant drive signal. We characterize how the frequency and temporal shape of the generated photon depends on the frequency and amplitude of the drive signal. By modulating the drive amplitude and frequency, we achieve a frequency tunability of 40 MHz while maintaining the photon mode shape this http URL measurements of the quadrature amplitudes of the emitted photons, we demonstrate consistently high state and process fidelities around 95\% across the tunable frequency range. Our hardware-efficient approach eliminates the need for additional biasing lines typically required for frequency tuning, offering a simplified architecture for scalable quantum communication.

Photon-noise-tolerant dispersive readout of a superconducting qubit using a nonlinear Purcell filter

  1. Yoshiki Sunada,
  2. Kenshi Yuki,
  3. Zhiling Wang,
  4. Takeaki Miyamura,
  5. Jesper Ilves,
  6. Kohei Matsuura,
  7. Peter A. Spring,
  8. Shuhei Tamate,
  9. Shingo Kono,
  10. and Yasunobu Nakamura
Residual noise photons in a readout resonator become a major source of dephasing for a superconducting qubit when the resonator is optimized for a fast, high-fidelity dispersive readout.
Here, we propose and demonstrate a nonlinear Purcell filter that suppresses such an undesired dephasing process without sacrificing the readout performance. When a readout pulse is applied, the filter automatically reduces the effective linewidth of the readout resonator, increasing the sensitivity of the qubit to the input field. The noise tolerance of the device we fabricated is shown to be enhanced by a factor of three relative to a device with a linear filter. The measurement rate is enhanced by another factor of three by utilizing the bifurcation of the nonlinear filter. A readout fidelity of 99.4% and a QND fidelity of 99.2% are achieved using a 40-ns readout pulse. The nonlinear Purcell filter will be an effective tool for realizing a fast, high-fidelity readout without compromising the coherence time of the qubit.