Path entanglement constitutes an essential resource in quantum information
and communication protocols. Here, we demonstrate frequency-degenerate
entanglement between continuous-variablequantum microwaves propagating along
two spatially separated paths. We combine a squeezed and a vacuum state using a
microwave beam splitter. Via correlation measurements, we detect and quantify
the path entanglement contained in the beam splitter output state. Our
experiments open the avenue to quantum teleportation, quantum communication, or
quantum radar with continuous variables at microwave frequencies.
We demonstrate enhancement of the dispersive frequency shift in a coplanar
waveguide resonator induced by a capacitively-coupled superconducting flux
qubit in the straddling regime.The magnitude of the observed shift, 80 MHz for
the qubit-resonator detuning of 5 GHz, is quantitatively explained by the
generalized Jaynes-Cummings model which takes into account the contribution of
the qubit higher energy levels. By applying the enhanced dispersive shift to
the qubit readout, we achieved 90% contrast of the Rabi oscillations which is
mainly limited by the energy relaxation of the qubit.
A new method for detecting the magnetic resonance of electronic spins at low
temperature is demonstrated. It consists in measuring the signal emitted by the
spins with a superconductingqubit that acts as a single-microwave-photon
detector, resulting in an enhanced sensitivity. We implement this new type of
electron-spin resonance spectroscopy using a hybrid quantum circuit in which a
transmon qubit is coupled to a spin ensemble consisting of NV centers in
diamond. With this setup we measure the NV center absorption spectrum at 30mK
at an excitation level of thicksim15,mu_{B} out of an ensemble of 10^{11}
spins.