Enhancing Intrinsic Quality Factors Approaching 10 Million in Superconducting Planar Resonators via Spiral Geometry

  1. Yusuke Tominaga,
  2. Shotaro Shirai,
  3. Yuji Hishida,
  4. Hirotaka Terai,
  5. and Atsushi Noguchi
This study investigates the use of spiral geometry in superconducting resonators to achieve high intrinsic quality factors, crucial for applications in quantum computation and quantum
sensing. We fabricated Archimedean Spiral Resonators (ASRs) using domain-matched epitaxially grown titanium nitride (TiN) on silicon wafers, achieving intrinsic quality factors of Qi=(9.6±1.5)×106 at the single-photon level and Qi=(9.91±0.39)×107 at high power, significantly outperforming traditional coplanar waveguide (CPW) resonators. We conducted a comprehensive numerical analysis using COMSOL to calculate surface participation ratios (PRs) at critical interfaces: metal-air, metal-substrate, and substrate-air. Our findings reveal that ASRs have lower PRs than CPWs, explaining their superior quality factors and reduced coupling to two-level systems (TLSs).

All-microwave manipulation of superconducting qubits with a fixed-frequency transmon coupler

  1. Shotaro Shirai,
  2. Yuta Okubo,
  3. Kohei Matsuura,
  4. Alto Osada,
  5. Yasunobu Nakamura,
  6. and Atsushi Noguchi
All-microwave control of fixed-frequency superconducting quantum computing circuits is advantageous for minimizing the noise channels and wiring costs. Here we introduce a swap interaction
between two data transmons assisted by the third-order nonlinearity of a coupler transmon under a microwave drive. We model the interaction analytically and numerically and use it to implement an all-microwave controlled-Z gate. The gate based on the coupler-assisted swap transition maintains high drive efficiency and small residual interaction over a wide range of detuning between the data transmons.

Generating time-domain linear cluster state by recycling superconducting qubits

  1. Shotaro Shirai,
  2. Yu Zhou,
  3. Keiichi Sakata,
  4. Hiroto Mukai,
  5. and Jaw-Shen Tsai
Cluster states, a type of highly entangled state, are essential resources for quantum information processing. Here we demonstrated the generation of a time-domain linear cluster state
(t-LCS) using a superconducting quantum circuit consisting of only two transmon qubits. By recycling the physical qubits, the t-LCS equivalent up to four physical qubits was validated by quantum state tomography with fidelity of 59%. We further confirmed the true generation of t-LCS by examining the expectation value of an entanglement witness. Our demonstrated protocol of t-LCS generation allows efficient use of physical qubits which could lead to resource-efficient execution of quantum circuits on large scale.