Pareto-Front Engineering of Dynamical Sweet Spots in Superconducting Qubits

  1. Zhen Yang,
  2. Shan Jin,
  3. Yajie Hao,
  4. Guangwei Deng,
  5. Xiu-Hao Deng,
  6. Re-Bing Wu,
  7. and Xiaoting Wang
Operating superconducting qubits at dynamical sweet spots (DSSs) suppresses decoherence from low-frequency flux noise. A key open question is how long coherence can be extended under
this strategy and what fundamental limits constrain it. Here we introduce a fully parameterized, multi-objective periodic-flux modulation framework that simultaneously optimizes energy relaxation T1 and pure dephasing Tϕ, thereby quantifying the tradeoff between them. For fluxonium qubits with realistic noise spectra, our method enhances Tϕ by a factor of 3-5 compared with existing DSS strategies while maintaining T1 in the hundred-microsecond range. We further prove that, although DSSs eliminate first-order sensitivity to low-frequency noise, relaxation rate cannot be reduced arbitrarily close to zero, establishing an upper bound on achievable T1. At the optimized working points, we identify double-DSS regions that are insensitive to both DC and AC flux, providing robust operating bands for experiments. As applications, we design single- and two-qubit control protocols at these operating points and numerically demonstrate high-fidelity gate operations. These results establish a general and useful framework for Pareto-front engineering of DSSs that substantially improves coherence and gate performance in superconducting qubits.

Quantum Fourier Transform in Oscillating Modes

  1. Qi-Ming Chen,
  2. Frank Deppe,
  3. Re-Bing Wu,
  4. Luyan Sun,
  5. Yu-xi Liu,
  6. Yuki Nojiri,
  7. Stefan Pogorzalek,
  8. Michael Renger,
  9. Matti Partanen,
  10. Kirill G. Fedorov,
  11. Achim Marx,
  12. and Rudolf Gross
Quantum Fourier transform (QFT) is a key ingredient of many quantum algorithms. In typical applications such as phase estimation, a considerable number of ancilla qubits and gates are
used to form a Hilbert space large enough for high-precision results. Qubit recycling reduces the number of ancilla qubits to one, but it is only applicable to semi-classical QFT and requires repeated measurements and feedforward within the coherence time of the qubits. In this work, we explore a novel approach based on resonators that forms a high-dimensional Hilbert space for the realization of QFT. By employing the perfect state-transfer method, we map an unknown multi-qubit state to a single resonator, and obtain the QFT state in the second oscillator through cross-Kerr interaction and projective measurement. A quantitive analysis shows that our method allows for high-dimensional and fully-quantum QFT employing the state-of-the-art superconducting quantum circuits. This paves the way for implementing various QFT related quantum algorithms.

Tuning coupling between superconducting resonators with collective qubits

  1. Qi-Ming Chen,
  2. Re-Bing Wu,
  3. Luyan Sun,
  4. and Yu-xi Liu
By coupling multiple artificial atoms simultaneously to two superconducting resonators, we construct a quantum switch that controls the resonator-resonator coupling strength from zero
to a large value proportional to the number of qubits. This process is implemented by switching the qubits among different \emph{subradiant states}, where the microwave photons decayed from different qubits interfere destructively so that the coupling strength keeps stable against environmental noise. Based on a two-step control scheme, the coupling strength can be switched at the \emph{nanosecond} scale while the qubits are maintained at the coherent optimal point. We also use the quantum switch to connect multiple resonators with a programmable network topology, and demonstrate its potential applications in quantum simulation and scalable quantum information storage and processing.

Feedback-induced nonlinearity and superconducting on-chip quantum optics

  1. Zhong-Peng Liu,
  2. Hui Wang,
  3. Jing Zhang,
  4. Yu-xi Liu,
  5. Re-Bing Wu,
  6. and Franco Nori
Quantum coherent feedback has been proven to be an efficient way to tune the dynamics of quantum optical systems and, recently, those of solid-state quantum circuits. Here, inspired
by the recent progress of quantum feedback experiments, especially those in mesoscopic circuits, we prove that superconducting circuit QED systems, shunted with a coherent feedback loop, can change the dynamics of a superconducting transmission line resonator, i.e., a linear quantum cavity, and lead to strong on-chip nonlinear optical phenomena. We find that bistability can occur under the semiclassical approximation, and photon anti-bunching can be shown in the quantum regime. Our study presents new perspectives for engineering nonlinear quantum dynamics on a chip.