Light-Matter Interaction in dispersive Superconducting Circuit QED

  1. Harsh Arora,
  2. Jay Deshmukh,
  3. Ansh Das,
  4. Rajamani Vijayaraghavan,
  5. and Baladitya Suri
It is well known that superconducting waveguides strongly attenuate the propagation of electromagnetic waves with frequencies beyond the superconducting gap. In circuit QED, the interaction
between non-linear charge qubits and superconducting resonators invariably involves the qubit coupling to a large set of resonator modes. So far, strong dispersion effects near and beyond the superconducting-gap have been ignored in quantization models. Rather, it is assumed that the superconducting resonator behaves ideally across the large frequency intervals. We present a quantization approach which includes the superconducting frequency-dependent surface impedance and demonstrate that superconducting dispersion plays a role in determining the effective light-matter interaction cut-off.

Design and characterization of a lumped element single-ended superconducting microwave parametric amplifier with on-chip flux bias line

  1. Josh Mutus,
  2. Ted White,
  3. Evan Jeffery,
  4. Daniel Sank,
  5. Rami Barends,
  6. Joerg Bochmann,
  7. Yu Chen,
  8. Zijun Chen,
  9. Ben Chiaro,
  10. Andrew Dunsworth,
  11. Julian Kelly,
  12. Anthony Megrant,
  13. Charles Neill,
  14. Peter O'malley,
  15. Pedram Roushan,
  16. Amit Vainsencher,
  17. Jim Wenner,
  18. Irfan Siddiqi,
  19. Rajamani Vijayaraghavan,
  20. Andrew Cleland,
  21. and John Martinis
We demonstrate a lumped-element Josephson Parametric Amplifier (LJPA), using a single-ended design that includes an on-chip, high-bandwidth flux bias line. The amplifier can be pumped
into its region of parametric gain through either the input port or through the flux bias line. Broadband amplification is achieved at a tunable frequency $\omega/2 \pi$ between 5 to 7 GHz with quantum-limited noise performance, a gain-bandwidth product greater than 500 MHz, and an input saturation power in excess of -120 dBm. The bias line allows fast frequency tuning of the amplifier, with variations of hundreds of MHz over time scales shorter than 10 ns.