Quantum error correction can allow quantum computers to operate despite the presence of noise and imperfections. A critical component of any error correcting scheme is the mapping oferror syndromes onto an ancillary measurement system. However, errors occurring in the ancilla can propagate onto the logical qubit, and irreversibly corrupt the encoded information. Here, we demonstrate a fault-tolerant syndrome measurement scheme that dramatically suppresses forward propagation of ancilla errors. We achieve an eightfold reduction of the logical error probability per measurement, while maintaining the syndrome assignment fidelity. We use the same method to prevent the propagation of thermal ancilla excitations, increasing the logical qubit dephasing time by more than an order of magnitude. Our approach is hardware-efficient, as it uses a single multilevel transmon ancilla and a cavity-encoded logical qubit, whose interaction is engineered in situ using an off-resonant sideband drive. These results demonstrate that hardware-efficient approaches which exploit system-specific error models can yield practical advances towards fault-tolerant quantum computation.
Interference experiments provide a simple yet powerful tool to unravel fundamental features of quantum physics. Here we engineer an RF-driven, time-dependent bilinear coupling thatcan be tuned to implement a robust 50:50 beamsplitter between stationary states stored in two superconducting cavities in a three-dimensional architecture. With this, we realize high contrast Hong-Ou- Mandel (HOM) interference between two spectrally-detuned stationary modes. We demonstrate that this coupling provides an efficient method for measuring the quantum state overlap between arbitrary states of the two cavities. Finally, we showcase concatenated beamsplitters and differential phase shifters to implement cascaded Mach-Zehnder interferometers, which can control the signature of the two-photon interference on-demand. Our results pave the way toward implementation of scalable boson sampling, the application of linear optical quantum computing (LOQC) protocols in the microwave domain, and quantum algorithms between long-lived bosonic memories.
A quantum computer has the potential to effciently solve problems that are intractable for classical computers. Constructing a large-scale quantum processor, however, is challengingdue to errors and noise inherent in real-world quantum systems. One approach to this challenge is to utilize modularity–a pervasive strategy found throughout nature and engineering–to build complex systems robustly. Such an approach manages complexity and uncertainty by assembling small, specialized components into a larger architecture. These considerations motivate the development of a quantum modular architecture, where separate quantum systems are combined via communication channels into a quantum network. In this architecture, an essential tool for universal quantum computation is the teleportation of an entangling quantum gate, a technique originally proposed in 1999 which, until now, has not been realized deterministically. Here, we experimentally demonstrate a teleported controlled-NOT (CNOT) operation made deterministic by utilizing real-time adaptive control. Additionally, we take a crucial step towards implementing robust, error-correctable modules by enacting the gate between logical qubits, encoding quantum information redundantly in the states of superconducting cavities. Such teleported operations have significant implications for fault-tolerant quantum computation, and when realized within a network can have broad applications in quantum communication, metrology, and simulations. Our results illustrate a compelling approach for implementing multi-qubit operations on logical qubits within an error-protected quantum modular architecture.
Modular quantum computing architectures require fast and efficient distribution of quantum information through propagating signals. Here we report rapid, on-demand quantum state transferbetween two remote superconducting cavity quantum memories through traveling microwave photons. We demonstrate a quantum communication channel by deterministic transfer of quantum bits with 76% fidelity. Heralding on errors induced by experimental imperfection can improve this to 87% with a success probability of 0.87. By partial transfer of a microwave photon, we generate remote entanglement at a rate that exceeds photon loss in either memory by more than a factor of three. We further show the transfer of quantum error correction code words that will allow deterministic mitigation of photon loss. These results pave the way for scaling superconducting quantum devices through modular quantum networks.
Large-scale quantum information processing networks will most probably require the entanglement of distant systems that do not interact directly. This can be done by performing entanglinggates between standing information carriers, used as memories or local computational resources, and flying ones, acting as quantum buses. We report the deterministic entanglement of two remote transmon qubits by Raman stimulated emission and absorption of a traveling photon wavepacket. We achieve a Bell state fidelity of 73 %, well explained by losses in the transmission line and decoherence of each qubit.
Controlling quasiparticle dynamics can improve the performance of superconducting devices. For example, it has been demonstrated effective in increasing lifetime and stability of superconductingqubits. Here we study how to optimize the placement of normal-metal traps in transmon-type qubits. When the trap size increases beyond a certain characteristic length, the details of the geometry and trap position, and even the number of traps, become important. We discuss for some experimentally relevant examples how to shorten the decay time of the excess quasiparticle density. Moreover, we show that a trap in the vicinity of a Josephson junction can reduce the steady-state quasiparticle density near that junction, thus suppressing the quasiparticle-induced relaxation rate of the qubit. Such a trap also reduces the impact of fluctuations in the generation rate of quasiparticles, rendering the qubit more stable.
The quantum Zeno effect (QZE) is the apparent freezing of a quantum system in one state under the influence of a continuous observation. It has been further generalized to the stabilizationof a manifold spanned by multiple quantum states. In that case, motion inside the manifold can subsist and can even be driven by the combination of a dissipative stabilization and an external force. A superconducting microwave cavity that exchanges pairs of photons with its environments constitutes an example of a system which displays a stabilized manifold spanned by Schr\“odinger cat states. For this driven-dissipative system, the quantum Zeno stabilization transforms a simple linear drive into photon number parity oscillations within the stable cat state manifold. Without this stabilization, the linear drive would trivially displace the oscillator state and push it outside of the manifold. However, the observation of this effect is experimentally challenging. On one hand, the adiabaticity condition requires the oscillations to be slow compared to the manifold stabilization rate. On the other hand, the oscillations have to be fast compared with the coherence timescales within the stabilized manifold. Here, we implement the stabilization of a manifold spanned by Schr\“odinger cat states at a rate that exceeds the main source of decoherence by two orders of magnitude, and we show Zeno-driven coherent oscillations within this manifold. While related driven manifold dynamics have been proposed and observed, the non-linear dissipation specific to our experiment adds a crucial element: any drift out of the cat state manifold is projected back into it. The coherent oscillations of parity observed in this work are analogous to the Rabi rotation of a qubit protected against phase-flips and are likely to become part of the toolbox in the construction of a fault-tolerant logical qubit.
We convert propagating qubits encoded as superpositions of zero and one photons to the motion of a micrometer-sized mechanical resonator. Using quantum state tomography, we determinethe density matrix of both the propagating photons and the mechanical resonator. By comparing a sufficient set of states before and after conversion, we determine the average process fidelity to be Favg=0.83+0.03−0.06 which exceeds the classical bound for the conversion of an arbitrary qubit state. This conversion ability is necessary for using mechanical resonators in emerging quantum communication and modular quantum computation architectures.
We present a device demonstrating a lithographically patterned transmon integrated with a micromachined cavity resonator. Our two-cavity, one-qubit device is a multilayer microwaveintegrated quantum circuit (MMIQC), comprising a basic unit capable of performing circuit-QED (cQED) operations. We describe the qubit-cavity coupling mechanism of a specialized geometry using an electric field picture and a circuit model, and finally obtain specific system parameters using simulations. Fabrication of the MMIQC includes lithography, etching, and metallic bonding of silicon wafers. Superconducting wafer bonding is a critical capability that is demonstrated by a micromachined storage cavity lifetime 34.3 μs, corresponding to a quality factor of 2 million at single-photon energies. The transmon coherence times are T1=6.4 μs, and TEcho2=11.7 μs. We measure qubit-cavity dispersive coupling with rate χqμ/2π=−1.17 MHz, constituting a Jaynes-Cummings system with an interaction strength g/2π=49 MHz. With these parameters we are able to demonstrate cQED operations in the strong dispersive regime with ease. Finally, we highlight several improvements and anticipated extensions of the technology to complex MMIQCs.
The presence of quasiparticles in superconducting qubits emerges as an intrinsic constraint on their coherence. While it is difficult to prevent the generation of quasiparticles, keepingthem away from active elements of the qubit provides a viable way of improving the device performance. Here we develop theoretically and validate experimentally a model for the effect of a single small trap on the dynamics of the excess quasiparticles injected in a transmon-type qubit. The model allows one to evaluate the time it takes to evacuate the injected quasiparticles from the transmon as a function of trap parameters. With the increase of the trap size, this time decreases monotonically, saturating at the level determined by the quasiparticles diffusion constant and the qubit geometry. We determine the characteristic trap size needed for the relaxation time to approach that saturation value.