Deterministic remote entanglement of superconducting circuits through microwave two-photon transitions

  1. P. Campagne-Ibarcq,
  2. E. Zalys-Geller,
  3. A. Narla,
  4. S. Shankar,
  5. P. Reinhold,
  6. L. D. Burkhart,
  7. C. J. Axline,
  8. W. Pfaff,
  9. L. Frunzio,
  10. R. J. Schoelkopf,
  11. and M. H. Devoret
Large-scale quantum information processing networks will most probably require the entanglement of distant systems that do not interact directly. This can be done by performing entangling gates between standing information carriers, used as memories or local computational resources, and flying ones, acting as quantum buses. We report the deterministic entanglement of two remote transmon qubits by Raman stimulated emission and absorption of a traveling photon wavepacket. We achieve a Bell state fidelity of 73 %, well explained by losses in the transmission line and decoherence of each qubit.

leave comment