Faithful conversion of propagating quantum information to mechanical motion

  1. A. P. Reed,
  2. K. H. Mayer,
  3. J. D. Teufel,
  4. L. D. Burkhart,
  5. W. Pfaff,
  6. M. Reagor,
  7. L. Sletten,
  8. X. Ma,
  9. R. J. Schoelkopf,
  10. E. Knill,
  11. and K. W. Lehnert
We convert propagating qubits encoded as superpositions of zero and one photons to the motion of a micrometer-sized mechanical resonator. Using quantum state tomography, we determine
the density matrix of both the propagating photons and the mechanical resonator. By comparing a sufficient set of states before and after conversion, we determine the average process fidelity to be Favg=0.83+0.03−0.06 which exceeds the classical bound for the conversion of an arbitrary qubit state. This conversion ability is necessary for using mechanical resonators in emerging quantum communication and modular quantum computation architectures.

Quantum-enabled temporal and spectral mode conversion of microwave signals

  1. R. W. Andrews,
  2. A. P. Reed,
  3. K. Cicak,
  4. J. D. Teufel,
  5. and K. W. Lehnert
Electromagnetic waves are ideal candidates for transmitting information in a quantum network as they can be routed rapidly and efficiently between locations using optical fibers or
microwave cables. Yet linking quantum-enabled devices with cables has proved difficult because most cavity or circuit quantum electrodynamics (cQED) systems used in quantum information processing can only absorb and emit signals with a specific frequency and temporal envelope. Here we show that the temporal and spectral content of microwave-frequency electromagnetic signals can be arbitrarily manipulated with a flexible aluminum drumhead embedded in a microwave circuit. The aluminum drumhead simultaneously forms a mechanical oscillator and a tunable capacitor. This device offers a way to build quantum microwave networks using separate and otherwise mismatched components. Furthermore, it will enable the preparation of non-classical states of motion by capturing non-classical microwave signals prepared by the most coherent circuit QED systems.