Effect of metal encapsulation on bulk superconducting properties of niobium thin films used in qubits

  1. Amlan Datta,
  2. Kamal R. Joshi,
  3. Sunil Ghimire,
  4. Bicky S. Moirangthem,
  5. Makariy A. Tanatar,
  6. Mustafa Bal,
  7. Zuhawn Sung,
  8. Sabrina Garattoni,
  9. Francesco Crisa,
  10. Akshay Murthy,
  11. David A. Garcia-Wetten,
  12. Dominic P. Goronzy,
  13. Mark C. Hersam,
  14. Michael J. Bedzyk,
  15. Shaojiang Zhu,
  16. David Olaya,
  17. Peter Hopkins,
  18. Matthew J. Kramer,
  19. Alexander Romanenko,
  20. Anna Grassellino,
  21. and Ruslan Prozorov
Niobium metal occupies nearly 100% of the volume of a typical 2D transmon device. While the aluminum Josephson junction is of utmost importance, maintaining quantum coherence across
the entire device means that pair-breaking in Nb leads, capacitive pads, and readout resonators can be a major source of decoherence. The established contributors are surface oxides and hydroxides, as well as absorbed hydrogen and oxygen. Metal encapsulation of freshly grown surfaces with non-oxidizing metals, preferably without breaking the vacuum, is a successful strategy to mitigate these issues. While the positive effects of encapsulation are undeniable, it is important to understand its impact on the macroscopic behavior of niobium films. We present a comprehensive study of the bulk superconducting properties of Nb thin films encapsulated with gold and palladium/gold, and compare them to those of bare Nb films. Magneto-optical imaging, magnetization, resistivity, and London and Campbell penetration depth measurements reveal significant differences in encapsulated samples. Both sputtered, and epitaxial Au-capped films exhibit the highest residual resistivity ratio and superconducting transition temperature, as well as the lowest upper critical field, London penetration depth, and critical current. These results are in good agreement with the microscopic theory of anisotropic normal and superconducting states of Nb. We conclude that pair-breaking in the bulk of niobium films, driven by disorder throughout the film rather than just at the surface, is a significant source of quantum decoherence in transmons. We also conclude that gold capping not only passivates the surface but also affects the properties of the entire film, significantly reducing the scattering rate due to defects likely induced by surface diffusion if the film is not protected immediately after fabrication.

Correlating Superconducting Qubit Performance Losses to Sidewall Near-Field Scattering via Terahertz Nanophotonics

  1. Richard H. J. Kim,
  2. Samuel J. Haeuser,
  3. Joong-Mok Park,
  4. Randall K. Chan,
  5. Jin-Su Oh,
  6. Thomas Koschny,
  7. Lin Zhou,
  8. Matthew J. Kramer,
  9. Akshay A. Murthy,
  10. Mustafa Bal,
  11. Francesco Crisa,
  12. Sabrina Garattoni,
  13. Shaojiang Zhu,
  14. Andrei Lunin,
  15. David Olaya,
  16. Peter Hopkins,
  17. Alex Romanenko,
  18. Anna Grassellino,
  19. and Jigang Wang
Elucidating dielectric losses, structural heterogeneity, and interface imperfections is critical for improving coherence in superconducting qubits. However, most diagnostics rely on
destructive electron microscopy or low-throughput millikelvin quantum measurements. Here, we demonstrate noninvasive terahertz (THz) nano-imaging/-spectroscopy of encapsulated niobium transmon qubits, revealing sidewall near-field scattering that correlates with qubit coherence. We further employ a THz hyperspectral line scan to probe dielectric responses and field participation at Al junction interfaces. These findings highlight the promise of THz near-field methods as a high-throughput proxy characterization tool for guiding material selection and optimizing processing protocols to improve qubit and quantum circuit performance.