The innate complexity of solid state physics exposes superconducting quantum circuits to interactions with uncontrolled degrees of freedom degrading their coherence. By using a simplestabilization sequence we show that a superconducting fluxonium qubit is coupled to a two-level system (TLS) environment of unknown origin, with a relatively long energy relaxation time exceeding 50ms. Implementing a quantum Szilard engine with an active feedback control loop allows us to decide whether the qubit heats or cools its TLS environment. The TLSs can be cooled down resulting in a four times lower qubit population, or they can be heated to manifest themselves as a negative temperature environment corresponding to a qubit population of ∼80%. We show that the TLSs and the qubit are each other’s dominant loss mechanism and that the qubit relaxation is independent of the TLS populations. Understanding and mitigating TLS environments is therefore not only crucial to improve qubit lifetimes but also to avoid non-Markovian qubit dynamics.
The rapid progress in quantum information processing leads to a rising demand for devices to control the propagation of electromagnetic wave pulses and to ultimately realize a universaland efficient quantum memory. While in recent years significant progress has been made to realize slow light and quantum memories with atoms at optical frequencies, superconducting circuits in the microwave domain still lack such devices. Here, we demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide, forming a waveguide quantum electrodynamics system. We analyze two complementary approaches, one relying on dressed states of the Autler-Townes splitting, and the other based on a tailored dispersion profile using the qubits tunability. Our time-resolved experiments show reduced group velocities of down to a factor of about 1500 smaller than in vacuum. Depending on the method used, the speed of light can be controlled with an additional microwave tone or an effective qubit detuning. Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures and open the door to microwave dispersion engineering in the quantum regime.
Reading out the state of superconducting artificial atoms typically relies on dispersive coupling to a readout resonator. For a given system noise temperature, increasing the circulatingphoton number n¯ in the resonator enables a shorter measurement time and is therefore expected to reduce readout errors caused by spontaneous atom transitions. However, increasing n¯ is generally observed to also increase these transition rates. Here we present a fluxonium artificial atom in which we measure an overall flat dependence of the transition rates between its first two states as a function of n¯, up to n¯≈200. Despite the fact that we observe the expected decrease of the dispersive shift with increasing readout power, the signal-to-noise ratio continuously improves with increasing n¯. Even without the use of a parametric amplifier, at n¯=74, we measure fidelities of 99% and 93% for feedback-assisted ground and excited state preparation, respectively.
As quantum coherence times of superconducting circuits have increased from nanoseconds to hundreds of microseconds, they are currently one of the leading platforms for quantum informationprocessing. However, coherence needs to further improve by orders of magnitude to reduce the prohibitive hardware overhead of current error correction schemes. Reaching this goal hinges on reducing the density of broken Cooper pairs, so-called quasiparticles. Here, we show that environmental radioactivity is a significant source of nonequilibrium quasiparticles. Moreover, ionizing radiation introduces time-correlated quasiparticle bursts in resonators on the same chip, further complicating quantum error correction. Operating in a deep-underground lead-shielded cryostat decreases the quasiparticle burst rate by a factor fifty and reduces dissipation up to a factor four, showcasing the importance of radiation abatement in future solid-state quantum hardware.
Control and readout of superconducting quantum bits (qubits) require microwave pulses with gigahertz frequencies and nanosecond precision. To generate and analyze these microwave pulses,we developed a versatile FPGA-based electronics platform. While basic functionality is directly handled within the FPGA, guaranteeing highest accuracy on the nanosecond timescale, more complex control schemes render impractical to implement in hardware.
To provide deterministic timing and low latency with high flexibility, we developed the Taskrunner framework. It enables the execution of complex control schemes, so-called user tasks, on the real-time processing unit (RPU) of a heterogeneous Multiprocessor System-on-Chip (MPSoC). These user tasks are specified conveniently using standard C language and are compiled automatically by the MPSoC platform when loaded onto the RPU. We present the architecture of the Taskrunner framework as well as timing benchmarks and discuss applications in the field of quantum computing.
We developed a versatile integrated control and readout instrument for experiments with superconducting quantum bits (qubits), based on a field-programmable gate array (FPGA) platform.Using this platform, we perform measurement-based, closed-loop feedback operations with 428ns platform latency. The feedback capability is instrumental in realizing active reset initialization of the qubit into the ground state in a time much shorter than its energy relaxation time T1. We show experimental results demonstrating reset of a fluxonium qubit with 99.4% fidelity, using a readout-and-drive pulse sequence approximately 1.5μs long. Compared to passive ground state initialization through thermalization, with the time constant given by T1= 80μs, the use of the FPGA-based platform allows us to improve both the fidelity and the time of the qubit initialization by an order of magnitude.
Out of equilibrium quasiparticles (QPs) are one of the main sources of decoherence in superconducting quantum circuits, and are particularly detrimental in devices with high kineticinductance, such as high impedance resonators, qubits, and detectors. Despite significant progress in the understanding of QP dynamics, pinpointing their origin and decreasing their density remain outstanding tasks. The cyclic process of recombination and generation of QPs implies the exchange of phonons between the superconducting thin film and the underlying substrate. Reducing the number of substrate phonons with frequencies exceeding the spectral gap of the superconductor should result in a reduction of QPs. Indeed, we demonstrate that surrounding high impedance resonators made of granular aluminum (grAl) with lower gapped thin film aluminum islands increases the internal quality factors of the resonators in the single photon regime, suppresses the noise, and reduces the rate of observed QP bursts. The aluminum islands are positioned far enough from the resonators to be electromagnetically decoupled, thus not changing the resonator frequency, nor the loading. We therefore attribute the improvements observed in grAl resonators to phonon trapping at frequencies close to the spectral gap of aluminum, well below the grAl gap.