Quantum computing relies on the operation of qubits in an environment as free of noise as possible. This work reports on measuring the impact of environmental radiation on lifetimesof fixed frequency transmon qubits with various capacitor pad geometries by varying the amount of shielding used in the measurement space. It was found that the qubit lifetimes are robust against these shielding changes until the most extreme limit was tested without a mixing chamber shield in the refrigerator. In contrast, the quasiparticle tunneling rates were found to be extremely sensitive to all configurations tested, indicating these devices are not yet limited by losses related to superconducting quasiparticles.
Improving two-qubit gate performance and suppressing crosstalk are major, but often competing, challenges to achieving scalable quantum computation. In particular, increasing the couplingto realize faster gates has been intrinsically linked to enhanced crosstalk due to unwanted two-qubit terms in the Hamiltonian. Here, we demonstrate a novel coupling architecture for transmon qubits that circumvents the standard relationship between desired and undesired interaction rates. Using two fixed frequency coupling elements to tune the dressed level spacings, we demonstrate an intrinsic suppression of the static ZZ, while maintaining large effective coupling rates. Our architecture reveals no observable degradation of qubit coherence (T1,T2>100 μs) and, over a factor of 6 improvement in the ratio of desired to undesired coupling. Using the cross-resonance interaction we demonstrate a 180~ns single-pulse CNOT gate, and measure a CNOT fidelity of 99.77(2)% from interleaved randomized benchmarking.
The resonator-induced phase (RIP) gate is a multi-qubit entangling gate that allows a high degree of flexibility in qubit frequencies, making it attractive for quantum operations inlarge-scale architectures. We experimentally realize the RIP gate with four superconducting qubits in a three-dimensional (3D) circuit-quantum electrodynamics architecture, demonstrating high-fidelity controlled-Z (CZ) gates between all possible pairs of qubits from two different 4-qubit devices in pair subspaces. These qubits are arranged within a wide range of frequency detunings, up to as large as 1.8 GHz. We further show a dynamical multi-qubit refocusing scheme in order to isolate out 2-qubit interactions, and combine them to generate a four-qubit Greenberger-Horne-Zeilinger state.
Superconducting qubits are sensitive to a variety of loss mechanisms including dielectric loss from interfaces. By changing the physical footprint of the qubit it is possible to modulatesensitivity to surface loss. Here we show a systematic study of planar superconducting transmons of differing physical footprints to optimize the qubit design for maximum coherence. We find that qubits with small footprints are limited by surface loss and that qubits with large footprints are limited by other loss mechanisms which are currently not understood.