Topological photon pairs in a superconducting quantum metamaterial

  1. Ilya S. Besedin,
  2. Maxim A. Gorlach,
  3. Nikolay N. Abramov,
  4. Ivan Tsitsilin,
  5. Ilya N. Moskalenko,
  6. Alina A. Dobronosova,
  7. Dmitry O. Moskalev,
  8. Alexey R. Matanin,
  9. Nikita S. Smirnov,
  10. Ilya A. Rodionov,
  11. Alexander N. Poddubny,
  12. and Alexey V. Ustinov
Recent discoveries in topological physics hold a promise for disorder-robust quantum systems and technologies. Topological states provide the crucial ingredient of such systems featuring
increased robustness to disorder and imperfections. Here, we use an array of superconducting qubits to engineer a one-dimensional topologically nontrivial quantum metamaterial. By performing microwave spectroscopy of the fabricated array, we experimentally observe the spectrum of elementary excitations. We find not only the single-photon topological states but also the bands of exotic bound photon pairs arising due to the inherent anharmonicity of qubits. Furthermore, we detect the signatures of the two-photon bound edge-localized state which hints towards interaction-induced localization in our system. Our work demonstrates an experimental implementation of the topological model with attractive photon-photon interaction in a quantum metamaterial.