Preserving phase coherence and linearity in cat qubits with exponential bit-flip suppression

  1. Harald Putterman,
  2. Kyungjoo Noh,
  3. Rishi N. Patel,
  4. Gregory A. Peairs,
  5. Gregory S. MacCabe,
  6. Menyoung Lee,
  7. Shahriar Aghaeimeibodi,
  8. Connor T. Hann,
  9. Ignace Jarrige,
  10. Guillaume Marcaud,
  11. Yuan He,
  12. Hesam Moradinejad,
  13. John Clai Owens,
  14. Thomas Scaffidi,
  15. Patricio Arrangoiz-Arriola,
  16. Joe Iverson,
  17. Harry Levine,
  18. Fernando G.S.L. Brandão,
  19. Matthew H. Matheny,
  20. and Oskar Painter
Cat qubits, a type of bosonic qubit encoded in a harmonic oscillator, can exhibit an exponential noise bias against bit-flip errors with increasing mean photon number. Here, we focus
on cat qubits stabilized by two-photon dissipation, where pairs of photons are added and removed from a harmonic oscillator by an auxiliary, lossy buffer mode. This process requires a large loss rate and strong nonlinearities of the buffer mode that must not degrade the coherence and linearity of the oscillator. In this work, we show how to overcome this challenge by coloring the loss environment of the buffer mode with a multi-pole filter and optimizing the circuit to take into account additional inductances in the buffer mode. Using these techniques, we achieve near-ideal enhancement of cat-qubit bit-flip times with increasing photon number, reaching over 0.1 seconds with a mean photon number of only 4. Concurrently, our cat qubit remains highly phase coherent, with phase-flip times corresponding to an effective lifetime of T1,eff≃70 μs, comparable with the bare oscillator lifetime. We achieve this performance even in the presence of an ancilla transmon, used for reading out the cat qubit states, by engineering a tunable oscillator-ancilla dispersive coupling. Furthermore, the low nonlinearity of the harmonic oscillator mode allows us to perform pulsed cat-qubit stabilization, an important control primitive, where the stabilization can remain off for a significant fraction (e.g., two thirds) of a 3 μs cycle without degrading bit-flip times. These advances are important for the realization of scalable error-correction with cat qubits, where large noise bias and low phase-flip error rate enable the use of hardware-efficient outer error-correcting codes.

Self-correcting GKP qubit and gates in a driven-dissipative circuit

  1. Frederik Nathan,
  2. Liam O'Brien,
  3. Kyungjoo Noh,
  4. Matthew H. Matheny,
  5. Arne L. Grimsmo,
  6. Liang Jiang,
  7. and Gil Refael
We propose a circuit architecture for a dissipatively error-corrected GKP qubit. The device consists of a high-impedance LC circuit coupled to a Josephson junction and a resistor
via a controllable switch. When the switch is activated via a particular family of stepwise protocols, the resistor absorbs all noise-induced entropy, resulting in dissipative error correction of both phase and amplitude errors. This leads to an exponential increase of qubit lifetime, reaching beyond 10ms in simulations with near-feasible parameters. We show that the lifetime remains exponentially long in the presence of extrinsic noise and device/control imperfections (e.g., due to parasitics and finite control bandwidth) under specific thresholds. In this regime, lifetime is likely only limited by phase slips and quasiparticle tunneling. We show that the qubit can be read out and initialized via measurement of the supercurrent in the Josephson junction. We finally show that the qubit supports native self-correcting single-qubit Clifford gates, where dissipative error-correction of control noise leads to exponential suppression of gate infidelity.

Designing high-fidelity two-qubit gates between fluxonium qubits

  1. Emma L. Rosenfeld,
  2. Connor T. Hann,
  3. David I. Schuster,
  4. Matthew H. Matheny,
  5. and Aashish A. Clerk
We take a bottom-up, first-principles approach to design a two-qubit gate between fluxonium qubits for minimal error, speed, and control simplicity. Our proposed architecture consists
of two fluxoniums coupled via a linear resonator. Using a linear coupler introduces the possibility of material optimization for suppressing its loss, enables efficient driving of state-selective transitions through its large charge zero point fluctuation, reduces sensitivity to junction aging, and partially mitigates coherent coupling to two-level systems. Crucially, a resonator-as-coupler approach also suggests a clear path to increased connectivity between fluxonium qubits, by reducing capacitive loading when the coupler has a high impedance. After performing analytic and numeric analyses of the circuit Hamiltonian and gate dynamics, we tune circuit parameters to destructively interfere sources of coherent error, revealing an efficient, fourth-order scaling of coherent error with gate duration. For component properties from the literature, we predict an open-system average CZ gate infidelity of 1.86×10−4 in 70ns.

Collapse and Revival of an Artificial Atom Coupled to a Structured Photonic Reservoir

  1. Vinicius S. Ferreira,
  2. Jash Banker,
  3. Alp Sipahigil,
  4. Matthew H. Matheny,
  5. Andrew J. Keller,
  6. Eunjong Kim,
  7. Mohammad Mirhosseini,
  8. and Oskar Painter
A structured electromagnetic reservoir can result in novel dynamics of quantum emitters. In particular, the reservoir can be tailored to have a memory of past interactions with emitters,
in contrast to memory-less Markovian dynamics of typical open systems. In this Article, we investigate the non-Markovian dynamics of a superconducting qubit strongly coupled to a superconducting slow-light waveguide reservoir. Tuning the qubit into the spectral vicinity of the passband of this waveguide, we find non-exponential energy relaxation as well as substantial changes to the qubit emission rate. Further, upon addition of a reflective boundary to one end of the waveguide, we observe revivals in the qubit population on a timescale 30 times longer than the inverse of the qubit’s emission rate, corresponding to the round-trip travel time of an emitted photon. By tuning of the qubit-waveguide interaction strength, we probe a crossover between Markovian and non-Markovian qubit emission dynamics. These attributes allow for future studies of multi-qubit circuits coupled to structured reservoirs, in addition to constituting the necessary resources for generation of multiphoton highly entangled states.