A Cryogenic Muon Tagging System Based on Kinetic Inductance Detectors for Superconducting Quantum Processors

  1. Ambra Mariani,
  2. Laura Cardani,
  3. Mustafa Bal,
  4. Nicola Casali,
  5. Ivan Colantoni,
  6. Angelo Cruciani,
  7. Giorgio Del Castello,
  8. Daniele Delicato,
  9. Francesco De Dominicis,
  10. Matteo del Gallo Raccagiovine,
  11. Matteo Folcarelli,
  12. Sabrina Garattoni,
  13. Anna Grassellino,
  14. Mehmood Khan Yasir Raja,
  15. Valerio Pettinacci,
  16. Alberto Ressa,
  17. Tanay Roy,
  18. Marco Vignati,
  19. and David v Zanten
Ionizing radiation has emerged as a potential limiting factor for superconducting quantum processors, inducing quasiparticle bursts and correlated errors that challenge fault-tolerant
operation. Atmospheric muons are particularly problematic due to their high energy and penetration power, making passive shielding ineffective. Therefore, monitoring the real-time muon flux is crucial to guide the development of alternative error-correction or protection strategies. We present the design, simulation, and first operation of a cryogenic muon-tagging system based on Kinetic Inductance Detectors (KIDs) for integration with superconducting quantum processors. The system consists of two KIDs arranged in a vertical stack and operated at ~20 mK. Monte Carlo simulations based on Geant4 guided the prototype design and provided reference expectations for muon-tagging efficiency and accidental coincidences due to ambient γ-rays. We measured a muon-induced coincidence rate among the top and bottom detectors of (192 ± 9) × 10−3 events/s, in excellent agreement with the Monte Carlo prediction. The prototype achieves a muon-tagging efficiency of about 90% with negligible dead time. These results demonstrate the feasibility of operating a muon-tagging system at millikelvin temperatures and open the path toward its integration with multi-qubit chips to veto or correct muon-induced errors in real time.

Reducing the impact of radioactivity on quantum circuits in a deep-underground facility

  1. Laura Cardani,
  2. Francesco Valenti,
  3. Nicola Casali,
  4. Gianluigi Catelani,
  5. Thibault Charpentier,
  6. Massimiliano Clemenza,
  7. Ivan Colantoni,
  8. Angelo Cruciani,
  9. Luca Gironi,
  10. Lukas Grünhaupt,
  11. Daria Gusenkova,
  12. Fabio Henriques,
  13. Marc Lagoin,
  14. Maria Martinez,
  15. Giorgio Pettinari,
  16. Claudia Rusconi,
  17. Oliver Sander,
  18. Alexey V. Ustinov,
  19. Marc Weber,
  20. Wolfgang Wernsdorfer,
  21. Marco Vignati,
  22. Stefano Pirro,
  23. and Ioan M. Pop
As quantum coherence times of superconducting circuits have increased from nanoseconds to hundreds of microseconds, they are currently one of the leading platforms for quantum information
processing. However, coherence needs to further improve by orders of magnitude to reduce the prohibitive hardware overhead of current error correction schemes. Reaching this goal hinges on reducing the density of broken Cooper pairs, so-called quasiparticles. Here, we show that environmental radioactivity is a significant source of nonequilibrium quasiparticles. Moreover, ionizing radiation introduces time-correlated quasiparticle bursts in resonators on the same chip, further complicating quantum error correction. Operating in a deep-underground lead-shielded cryostat decreases the quasiparticle burst rate by a factor fifty and reduces dissipation up to a factor four, showcasing the importance of radiation abatement in future solid-state quantum hardware.