Understanding the mechanisms of qubit decoherence is a crucial prerequisite for improving the qubit performance. In this work we discuss the effects of residual Bogolyubov quasiparticlesin Schrödinger cat qubits, either of the dissipative or Kerr type. The major difference from previous studies of quasiparticles in superconducting qubits is that the Schrödinger cat qubits are operated under non-equilibrium conditions. Indeed, an external microwave drive is needed to stabilize „cat states“, which are superpositions of coherent degenerate eigenstates of an effective stationary Lindbladian in the rotating frame. We present a microscopic derivation of the master equation for cat qubits and express the effect of the quasiparticles as dissipators acting on the density matrix of the cat qubit. This enables us to determine the conditions under which the quasiparticles give a substantial contribution to the qubit errors.
Light does not typically scatter light, as witnessed by the linearity of Maxwell’s equations. We constructed a superconducting circuit, in which microwave photons have well-definedenergy and momentum, but their lifetime is finite due to decay into lower energy photons. The inelastic photon-photon interaction originates from quantum phase-slip fluctuation in a single Josephson junction and has no analogs in quantum optics. Instead, the surprisingly high decay rate is explained by mapping the system to a Luttinger liquid containing an impurity. Our result connects circuit quantum electrodynamics to the topic of boundary quantum field theories in two dimensions, influential to both high-energy and condensed matter physics. The photon lifetime data is a rare example of a verified and useful quantum many-body simulation.
Quantum fluctuations in an anharmonic superconducting circuit enable
frequency conversion of individual incoming photons. This effect, linear in the
photon beam intensity, leads toramifications for the standard input-output
circuit theory. We consider an extreme case of anharmonicity in which photons
scatter off a small set of weak links within a Josephson junction array. We
show that this quantum impurity displays Kondo physics and evaluate the elastic
and inelastic photon scattering cross sections. These cross sections reveal
many-body properties of the Kondo problem that are hard to access in its
traditional fermionic version.