High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits

  1. Yuan Xu,
  2. Ji Chu,
  3. Jiahao Yuan,
  4. Jiawei Qiu,
  5. Yuxuan Zhou,
  6. Libo Zhang,
  7. Xinsheng Tan,
  8. Yang Yu,
  9. Song Liu,
  10. Jian Li,
  11. Fei Yan,
  12. and Dapeng Yu
High-quality two-qubit gate operations are crucial for scalable quantum information processing. Often, the gate fidelity is compromised when the system becomes more integrated. Therefore,
a low-error-rate, easy-to-scale two-qubit gate scheme is highly desirable. Here, we experimentally demonstrate a new two-qubit gate scheme that exploits fixed-frequency qubits and a tunable coupler in a superconducting quantum circuit. The scheme requires less control lines, reduces crosstalk effect, simplifies calibration procedures, yet produces a controlled-Z gate in 30ns with a high fidelity of 99.5%. Error analysis shows that gate errors are mostly coherence-limited. Our demonstration paves the way for large-scale implementation of high-fidelity quantum operations.

Simulation of Higher-Order Topological Phases and Related Topological Phase Transitions in a Superconducting Qubit

  1. Jingjing Niu,
  2. Tongxing Yan,
  3. Yuxuan Zhou,
  4. Ziyu Tao,
  5. Xiaole Li,
  6. Weiyang Liu,
  7. Libo Zhang,
  8. Song Liu,
  9. Zhongbo Yan,
  10. Yuanzhen Chen,
  11. and Dapeng Yu
Higher-order topological insulators (TIs) and superconductors (TSCs) give rise to new bulk and boundary physics, as well as new classes of topological phase transitions. While higher-order
TIs have been actively studied on many platforms, the experimental study of higher-order TSCs has thus far been greatly hindered due to the scarcity of material realizations. To advance the study of higher-order TSCs, in this work we carry out the simulation of a two-dimensional spinless second-order TSC belonging to the symmetry class D in a superconducting qubit. Owing to the great flexibility and controllability of the quantum simulator, we observe the realization of higher-order topology directly through the measurement of the pseudo-spin texture in momentum space of the bulk for the first time, in sharp contrast to previous experiments based on the detection of gapless boundary modes in real space. Also through the measurement of the evolution of pseudo-spin texture with parameters, we further observe novel topological phase transitions from the second-order TSC to the trivial superconductor, as well as to the first-order TSC with nonzero Chern number. Our work sheds new light on the study of higher-order topological phases and topological phase transitions.

Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit

  1. Chao Song,
  2. Shi-Biao Zheng,
  3. Pengfei Zhang,
  4. Kai Xu,
  5. Libo Zhang,
  6. Qiujiang Guo,
  7. Wuxin Liu,
  8. Da Xu,
  9. Hui Deng,
  10. Keqiang Huang,
  11. Dongning Zheng,
  12. Xiaobo Zhu,
  13. and H. Wang
Geometric phase, associated with holonomy transformation in quantum state space, is an important quantum-mechanical effect. Besides fundamental interest, this effect has practical applications,
among which geometric quantum computation is a paradigm, where quantum logic operations are realized through geometric phase manipulation that has some intrinsic noise-resilient advantages and may enable simplified implementation of multiqubit gates compared to the dynamical approach. Here we report observation of a continuous-variable geometric phase and demonstrate a quantum gate protocol based on this phase in a superconducting circuit, where five qubits are controllably coupled to a resonator. Our geometric approach allows for one-step implementation of n-qubit controlled-phase gates, which represents a remarkable advantage compared to gate decomposition methods, where the number of required steps dramatically increases with n. Following this approach, we realize these gates with n up to 4, verifying the high efficiency of this geometric manipulation for quantum computation.

10-qubit entanglement and parallel logic operations with a superconducting circuit

  1. Chao Song,
  2. Kai Xu,
  3. Wuxin Liu,
  4. Chuiping Yang,
  5. Shi-Biao Zheng,
  6. Hui Deng,
  7. Qiwei Xie,
  8. Keqiang Huang,
  9. Qiujiang Guo,
  10. Libo Zhang,
  11. Pengfei Zhang,
  12. Da Xu,
  13. Dongning Zheng,
  14. Xiaobo Zhu,
  15. H. Wang,
  16. Y.-A. Chen,
  17. C.-Y. Lu,
  18. Siyuan Han,
  19. and J.-W. Pan
Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to 10 qubits connecting to a bus resonator in a superconducting circuit,
where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is unambiguously probed, with a fidelity of 0.668±0.025. Our results demonstrate the largest entanglement created so far in solid-state architectures, and pave the way to large-scale quantum computation.

Solving Systems of Linear Equations with a Superconducting Quantum Processor

  1. Yarui Zheng,
  2. Chao Song,
  3. Ming-Cheng Chen,
  4. Benxiang Xia,
  5. Wuxin Liu,
  6. Qiujiang Guo,
  7. Libo Zhang,
  8. Da Xu,
  9. Hui Deng,
  10. Keqiang Huang,
  11. Yulin Wu,
  12. Zhiguang Yan,
  13. Dongning Zheng,
  14. Li Lu,
  15. Jian-Wei Pan,
  16. H. Wang,
  17. Chao-Yang Lu,
  18. and Xiaobo Zhu
Superconducting quantum circuits are promising candidate for building scalable quantum computers. Here, we use a four-qubit superconducting quantum processor to solve a two-dimensional
system of linear equations based on a quantum algorithm proposed by Harrow, Hassidim, and Lloyd [Phys. Rev. Lett. \textbf{103}, 150502 (2009)], which promises an exponential speedup over classical algorithms under certain circumstances. We benchmark the solver with quantum inputs and outputs, and characterize it by non-trace-preserving quantum process tomography, which yields a process fidelity of 0.837±0.006. Our results highlight the potential of superconducting quantum circuits for applications in solving large-scale linear systems, a ubiquitous task in science and engineering.