We describe a wide-band Josephson Parametric Amplifier (JPA) that is impedance-matched using an integrated compact superconducting transmission line transformer. The impedance transformerconsists of two broadside coupled transmission lines configured in a Ruthroff topology which enables a wide matching bandwidth from 2 to 18 GHz, reducing the input line impedance and the device resonance quality factor by a factor of 4. This enables gain flatness and flexibility in the choice of the amplifier’s tuning range. The amplifier has up to 20dB gain, with less than 1 dB of ripple, 2-3 GHz gain-bandwidth product and -126 dBm input 1-dB compression point. Moreover, the device active area fits into a 1mm x 1mm space, thus easing integration into large quantum systems.
Quantum reservoir engineering is a powerful framework for autonomous quantum state preparation and error correction. However, traditional approaches to reservoir engineering are hinderedby unavoidable coherent leakage out of the target state, which imposes an inherent trade off between achievable steady-state state fidelity and stabilization rate. In this work we demonstrate a protocol that achieves trade off-free Bell state stabilization in a qutrit-qubit system realized on a circuit-QED platform. We accomplish this by creating a purely dissipative channel for population transfer into the target state, mediated by strong parametric interactions coupling the second-excited state of a superconducting transmon and the engineered bath resonator. Our scheme achieves a state preparation fidelity of 84% with a stabilization time constant of 339 ns, leading to the lowest error-time product reported in solid-state quantum information platforms to date.
We describe a kinetic inductance traveling-wave (KIT) amplifier suitable for superconducting quantum information measurements and characterize its wideband scattering and noise properties.We use mechanical microwave switches to calibrate the four amplifier scattering parameters up to the device input and output connectors at the dilution refrigerator base temperature and a tunable temperature load to characterize the amplifier noise. Finally, we demonstrate the high fidelity simultaneous dispersive readout of two superconducting transmon qubits. The KIT amplifier provides low-noise amplification of both readout tones with readout fidelities in excess of 89% and negligible effect on qubit lifetime and coherence.