Conditional coherent control with superconducting artificial atoms

  1. Chang-Kang Hu,
  2. Jiahao Yuan,
  3. Bruno A. Veloso,
  4. Jiawei Qiu,
  5. Yuxuan Zhou,
  6. Libo Zhang,
  7. Ji Chu,
  8. Orkesh Nurbolat,
  9. Ling Hu,
  10. Jian Li,
  11. Yuan Xu,
  12. Youpeng Zhong,
  13. Song Liu,
  14. Fei Yan,
  15. Dian Tan,
  16. R. Bachelard,
  17. Alan C. Santos,
  18. C. J. Villas-Boas,
  19. and Dapeng Yu
Controlling the flow of quantum information is a fundamental task for quantum computers, which is unpractical to realize on classical devices. Coherent devices which can process quantum
states are thus required to route the quantum states yielding the information. In this paper we demonstrate experimentally the smallest quantum transistor for superconducting processors, composed of collector and emitter qubits, and the coupler. The interaction strength between the collector and emitter is controlled by tuning the frequency and the state of the gate qubit, effectively implementing a quantum switch. From the truth-table measurement (open-gate fidelity 93.38%, closed-gate fidelity 98.77%), we verify the high performance of the quantum transistor. We also show that taking into account the third energy level of the qubits is critical to achieving a high-fidelity transistor. The presented device has a strong potential for quantum information processes in superconducting platforms.