semiconductor electronics are not able to probe signals arriving at the chip due to its cryogenic environment. Here, we demonstrate how the on-chip amplitude and frequency of a microwave field can be inferred from the ac Stark shifts of higher transmon levels. In our time-resolved measurements, we employ a simple quantum sensing protocol, i.e. Ramsey fringes, allowing us to detect the amplitude of the systems transfer function over a range of several hundreds of MHz with an energy sensitivity on the order of 10−4. Combined with similar measurements for the phase of the transfer function, our sensing method can facilitate the microwave calibration of high fidelity quantum gates necessary for working with superconducting quantum circuits. Additionally, the potential to characterize arbitrary microwave fields promotes applications in related areas of research, such as quantum optics or hybrid microwave systems including photonic, mechanical or magnonic subsystems.
Amplitude and frequency sensing of microwave fields with a superconducting transmon qudit
Experiments with superconducting circuits require careful calibration of the applied pulses and fields over a large frequency range. This remains an ongoing challenge as commercial