of nonzero charge, spin, and mass, have commonly been perceived as paradigmatic local quantum information carriers. Despite superior controllability and configurability, their practical performance as qubits via either motional or spin states depends critically on their material environment. Here we report our experimental realization of a new qubit platform based upon isolated single electrons trapped on an ultraclean solid neon surface in vacuum. By integrating an electron trap in a circuit quantum electrodynamics architecture, we achieve strong coupling between the motional states of a single electron and microwave photons in an on-chip superconducting resonator. Qubit gate operations and dispersive readout are used to measure the energy relaxation time T1 of 15 μs and phase coherence time T2 over 200 ns, indicating that the electron-on-solid-neon qubit already performs near the state of the art as a charge qubit.
Electron on solid neon — a new solid-state single-electron qubit platform
The promise of quantum computing has driven a persistent quest for new qubit platforms with long coherence, fast operation, and large scalability. Electrons, ubiquitous elementary particles