Monitoring fast superconducting qubit dynamics using a neural network

  1. G. Koolstra,
  2. N. Stevenson,
  3. S. Barzili,
  4. L. Burns,
  5. K. Siva,
  6. S. Greenfield,
  7. W. Livingston,
  8. A. Hashim,
  9. R. K. Naik,
  10. J.M. Kreikebaum,
  11. K. P. O'Brien,
  12. D. I. Santiago,
  13. J. Dressel,
  14. and I. Siddiqi
Weak measurements of a superconducting qubit produce noisy voltage signals that are weakly correlated with the qubit state. To recover individual quantum trajectories from these noisy
signals, traditional methods require slow qubit dynamics and substantial prior information in the form of calibration experiments. Monitoring rapid qubit dynamics, e.g. during quantum gates, requires more complicated methods with increased demand for prior information. Here, we experimentally demonstrate an alternative method for accurately tracking rapidly driven superconducting qubit trajectories that uses a Long-Short Term Memory (LSTM) artificial neural network with minimal prior information. Despite few training assumptions, the LSTM produces trajectories that include qubit-readout resonator correlations due to a finite detection bandwidth. In addition to revealing rotated measurement eigenstates and a reduced measurement rate in agreement with theory for a fixed drive, the trained LSTM also correctly reconstructs evolution for an unknown drive with rapid modulation. Our work enables new applications of weak measurements with faster or initially unknown qubit dynamics, such as the diagnosis of coherent errors in quantum gates.

Atomic layer deposition of titanium nitride for quantum circuits

  1. A. Shearrow,
  2. G. Koolstra,
  3. S. J. Whiteley,
  4. N. Earnest,
  5. P. S. Barry,
  6. F. J. Heremans,
  7. D. D. Awschalom,
  8. E. Shirokoff,
  9. and D.I. Schuster
Superconducting thin films with high intrinsic kinetic inductance are of great importance for photon detectors, achieving strong coupling in hybrid systems, and protected qubits. We
report on the performance of titanium nitride resonators, patterned on thin films (9-110 nm) grown by atomic layer deposition, with sheet inductances of up to 234 pH/square. For films thicker than 14 nm, quality factors measured in the quantum regime range from 0.4 to 1.0 million and are likely limited by dielectric two-level systems. Additionally, we show characteristic impedances up to 28 kOhm, with no significant degradation of the internal quality factor as the impedance increases. These high impedances correspond to an increased single photon coupling strength of 24 times compared to a 50 Ohm resonator, transformative for hybrid quantum systems and quantum sensing.

Coupling an ensemble of electrons on superfluid helium to a superconducting circuit

  1. Ge Yang,
  2. A. Fragner,
  3. G. Koolstra,
  4. L. Ocola,
  5. D.A. Czaplewski,
  6. R. J. Schoelkopf,
  7. and D.I. Schuster
The quantized lateral motional states and the spin states of electrons trapped on the surface of superfluid helium have been proposed as basic building blocks of a scalable quantum
computer. Circuit quantum electrodynamics (cQED) allows strong dipole coupling between electrons and a high-Q superconducting microwave resonator, enabling such sensitive detection and manipulation of electron degrees of freedom. Here we present the first realization of a hybrid circuit in which a large number of electrons are trapped on the surface of superfluid helium inside a coplanar waveguide resonator. The high finesse of the resonator allows us to observe large dispersive shifts that are many times the linewidth and make fast and sensitive measurements on the collective vibrational modes of the electron ensemble, as well as the superfluid helium film underneath. Furthermore, a large ensemble coupling is observed in the dispersive regime during experiment, and it shows excellent agreement with our numeric model. The coupling strength of the ensemble to the cavity is found to be >1 MHz per electron, indicating the feasibility of achieving single electron strong coupling.